期刊文献+

连续搅拌釜的模糊多模型自适应控制 被引量:3

Multiple Model Adaptive Control of CSTR
下载PDF
导出
摘要 多模型控制器是解决复杂非线性系统的控制问题的一个十分有效又易于实现的方法。针对化工过程连续搅拌釜的数学模型,在不同的工作点设计多个线性模型逼近被控对象的动态特性。并在此基础上,基于模糊控制器的设计原理,设计模糊多模型控制器,并对控制器的性能进行分析。仿真研究表明,此模糊多模型控制器作用于连续搅拌釜这个复杂的非线性被控对象,能够使系统的输出很好跟踪设定值。 The controller based on multiple models is a very effective and available tool for the control of nonlinear system. According the state equation of a chemical industry process-continuous stirred tank reactor (CSTR), multiple linear models were designed to approximate the dynamic character of the system. Based on these multiple models, a multi-model controller was formed by using fuzzy principle. The property of this fuzzy multi-model controller was analyzed in different aspects. From simulation, it can be seen that the fuzzy multi-model controller can force the output of the CSTR system to trace a set-point value very well.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第7期1959-1961,共3页 Journal of System Simulation
基金 国家自然科学基金(60604002) 北京市科技新星基金(2006B23) 北京市教委共建重点学科基金(xk100080537)
关键词 多模型 非线性系统 连续搅拌釜 模糊控制 multiple models nonlinear system CSTR fuzzy control
  • 相关文献

参考文献11

  • 1K S Narendra, J Balakrishan. Improving transient response of adaptive control system using multiple model and switching [J]. IEEE Trans on Automatic Control (S0018-9286), 1994, 39(9): 1861-1866.
  • 2K S Narendra, C Xiang. Adaptive control of discrete-time systems using multiple models [J]. IEEE Trans on Automatic Control (S0018- 9286), 2000, 45(9): 1669-1686.
  • 3P Zhivoglyadov, R H Middleton, M Y Fu. Localization based switching adaptive control for time-varying discrete systems [J]. IEEE Trans on Automatic Control (S0018-9286), 2000, 45(4): 752-755.
  • 4K S Narendra, J Balakrishan. Adaptive control using multiple model [J]. IEEE Trans on Automatic Control (S0018-9286), 1997, 42(2): 171 - 187.
  • 5乐艳,李少远.大范围工况热工过程系统的多模型预测控制[J].工业仪表与自动化装置,2004(5):31-33. 被引量:1
  • 6李晓理,王伟.多模型自适应控制[M].北京:科学出版社,2001.
  • 7孙维,王伟.基于T-S模型的非线性系统多模型直接自适应控制[J].控制与决策,2003,18(2):177-180. 被引量:1
  • 8李晓理,康运锋,胡广大.多模型自适应控制算法的性能分析[J].系统仿真学报,2007,19(4):815-819. 被引量:14
  • 9Danielle Dougherty, Doug Cooper. A practical multiple model adaptive strategy for multivariable model predictive control [J]. Control Engineering Practice, 2003, 11 (6): 649-664.
  • 10Jari M Boling, Dale E Seborg, Joao P Hespanha. Multi-model adaptive control of a simulated pH neutralization process [J]. Control Engineering Practice, 2007, 15(6): 663-672.

二级参考文献19

  • 1Danielle Dougherty,Doug Cooper.A practical multiple model adaptive strategy for single-loop MPC[J].control Engineering Practice,2003,11(2):141-159.
  • 2Townsend,S.,Lightbody,G.,Brown,M.D.,Irwin,G.W..Nonlinear dynamic matrix control using local models[J].Transactions of the Institute of Measurement and control,1998,20(1):47-46.
  • 3Zhong Zhao,Xiaohua Xia.Nonlinear dynamic matrix control based on multiple operating models[J].Journal of Process Control,2003,13(1):41-56.
  • 4Roderick Murray-Smith,Tor Ame Johansen.Multiple model approaches to moleling and control[M].London,Taylor and Francis,1997.
  • 5Wen-Jie Zhao,Yu-Guang Niu,Ji-Zhen Liu.Multi-model adaptive control for the superheated steam temperature[J].Proceedings of the first International Conference on Machine learning and Cybernetics,2002,1:269-272.
  • 6Philip E.Gill,Laurent O.Jay.An SQP Method for the optimal control of large-scale dynamical systems[J].Journal of Computational and Applied Mathematics.2000,120:197-213.
  • 7Athans M. The stochastic control of the F-8C aircraft using a multiple model adaptive control (mmac) method part Ⅰ: equilibrium flight [J].IEEE Transactions on Automatic Control (S0018-9286), 1997, 22(5):768-780.
  • 8Narendra K S. Parameter adaptive control-the end or the beginning[C]// Proceeding of 33^nd Conference on Decision and Control. Lake Buena Vista, FL. 1994.
  • 9Narendra K S, Balakrishnan J. Adaptive control using multiple models [J]. IEEE Transactions on Automatic Control (S0018-9286),1997, 42(2): 171-187.
  • 10Narendra K S , Xiang C. Adaptive control of discrete-time systems using multiple models [J]. IEEE Transactions on Automatic Control(S0018-9286), 2000, 45(9): 1669-1686.

共引文献15

同被引文献33

  • 1褚燕彬,曹柳林,王晶.利用组合B样条神经网络实现对间歇反应过程的动态建模[J].化工学报,2011,62(S1):157-162. 被引量:2
  • 2杨飚,张曾科.仿人智能控制器的动态特性参数整定方法[J].信息与控制,2004,33(6):670-673. 被引量:24
  • 3席裕庚,王凡.非线性系统预测控制的多模型方法[J].自动化学报,1996,22(4):456-461. 被引量:60
  • 4WERBOS P J. A menu of designs for reinforcement learning over time [M] //MILLER W T, SUTTON R S, WERBOS P J. NeuralNet- works for Control. Cambridge, USA: MIT Press, 1995.
  • 5AL-TAMIMI A, LEWIS F L. Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof [C] //Proceedings of lEEE International Symposium on Approximate Dy- namic Programming and Reinforcement Learning. Honululu: IEEE, 2007:240 - 247.
  • 6AL-TAMIMI A, LEWIS F L, ABU-KHALAF M. Discrete-time non- linear HJB solution using approximate dynamic programming: con- vergence proof [J]. IEEE Transactions on Systems, Man, and Cyber- netics, Part B: Cybernetics, 2008, 38(4): 943 -949.
  • 7ABU-KHALAF M, LEWIS F L. Nearly optimal state feedback con- trol of constrained nonlinear systems using a neural networks HJB approach [J]. Annual Reviews in Control, 2004, 28(2): 239 - 251.
  • 8FERRARI S, STECK J E, CHANDRAMOHAN R. Adaptive feed- back control by constrained approximate dynamic programming [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cy- bernetics, 2008, 38(4): 982 - 987.
  • 9ZHANG H G, LUO Y H, LIU D R. Neural-network-based near- optimal control for a class of discrete-time affine nonlinear systems with control constraints [J]. IEEE Transactions on Neural Networks, 2009, 20(9): 1490 - 1503.
  • 10AZHMYAKOV V, BOLTYANSKI V G, POZNYAK A S. On the dy- namic programming approach to multi-model robust optimal con- trol problems [C]//Proceedings of 1EEE International Symposium on American Control Conference. Washington: IEEE, 2008:4468 - 4473.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部