期刊文献+

基于概率神经网络的控制图模式识别 被引量:1

Control Chart Pattern Recognition Based on PNN
下载PDF
导出
摘要 近年来,人工神经网络被广泛应用于复杂过程质量异常的监控中。文献表明人工神经网络方法存在结构选择困难的问题,其解决主要通过研究人员的经验,耗时多且识别率低。本文提出使用概率神经网络来识别六类典型控制图模式,以改进神经网络识别器的设计效率。研究和仿真试验结果表明,概率神经网络不仅拓扑结构设计简单,而且识别率高。 In the recent years, artificial neural networks (ANN) have been widely used to monitor and control the process abnormal pattern occurred especially in the complex manufacturing quality control. But literatures show that this kind of work is primarily addressed according to the developer's personal experiences which would cost too much time with lower recognition accuracy. This paper proposes to use probability neural network (PNN) to recognize the six typical kinds of control chart patterns of the process to improve the design efficiency of the NN pattern recognizer. Research and numerical simulation result shows that PNN has not only the feature of simpler topology structure but also the higher pattern recognition accuracy.
作者 程志强
出处 《微计算机信息》 2009年第10期272-273,302,共3页 Control & Automation
关键词 控制图 模式识别 识别率 平均链长 概率神经网络 control chart pattern recognition recognition accuracy average run length probability neural network
  • 相关文献

参考文献4

  • 1Wimalin Sukthomya, James Tannock. The training of neural networks to model manufacturing processes. Journal of Intelligence Manufacturing 2005; 16;39-51.
  • 2Susanta Kumar. A study on the various features for effective control chart pattern recognition. International Journal of Advanced Manufacturing Technology (2007) 34:385-398.
  • 3周晓铭,陶俊才.基于BP神经网络的线切割工艺指标预测[J].微计算机信息,2008,24(7):232-233. 被引量:4
  • 4Ruey-Shiang Guh. Robustness of the neural network based control chart pattern recognition system to non -normality. International Journal of Quality & Reliability Management, 2002; 19(1):97-112.

二级参考文献4

共引文献3

同被引文献2

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部