摘要
考虑基于Facchinei F等(1997)提出的解决非线性互补问题的非光滑牛顿算法的收敛性质.对该算法我们在较弱的条件下给出了一般性的全局收敛结果,改进了Facchinei F(1997)和Dan H(2002)文中的相关结果,作为这个定理的推论,我们得到的迭代序列的每一个聚点x*或者是非线性互补问题的解或者是稳定点.最后,在局部误差界的条件下给出了超线性(二阶)收敛速度的证明.
In this paper, the convergence properties of the nonsmooth newton algorithm for solving nonlinear complementarity problems based on the paper of Facchinei F(1997) are considered. For this algorithm, a more general global convergence result under mild conditions is given, which improves the corresponding results in the papers of Facchinei F (1997) and Dan H (2002). As a corollary of the global convergence theorem, every accumulation point x ^* of the iteration sequence is generated by the nonsmooth newton algorithm is a solution of nonlinear complementarity problem or a stationary point. Finally, the superlinearly quadratically convergent theorem is presented.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2009年第2期17-22,共6页
Journal of Qufu Normal University(Natural Science)
基金
国家自然科学基金资助项目(10571106)
国家青年自然自然科学基金资助项目(10701047)
关键词
非线性互补问题
非光滑
局部误差界
全局收敛
nonlinear complementarity problem
nonsmooth
local error bound
global convergence