期刊文献+

解决非线性互补问题非光滑牛顿算法的全局收敛以及局部收敛性分析

The Analysis of Global and Local Convergence of Nonsmooth Newton Methods for Nonlinear Complementarity Problems
下载PDF
导出
摘要 考虑基于Facchinei F等(1997)提出的解决非线性互补问题的非光滑牛顿算法的收敛性质.对该算法我们在较弱的条件下给出了一般性的全局收敛结果,改进了Facchinei F(1997)和Dan H(2002)文中的相关结果,作为这个定理的推论,我们得到的迭代序列的每一个聚点x*或者是非线性互补问题的解或者是稳定点.最后,在局部误差界的条件下给出了超线性(二阶)收敛速度的证明. In this paper, the convergence properties of the nonsmooth newton algorithm for solving nonlinear complementarity problems based on the paper of Facchinei F(1997) are considered. For this algorithm, a more general global convergence result under mild conditions is given, which improves the corresponding results in the papers of Facchinei F (1997) and Dan H (2002). As a corollary of the global convergence theorem, every accumulation point x ^* of the iteration sequence is generated by the nonsmooth newton algorithm is a solution of nonlinear complementarity problem or a stationary point. Finally, the superlinearly quadratically convergent theorem is presented.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2009年第2期17-22,共6页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金资助项目(10571106) 国家青年自然自然科学基金资助项目(10701047)
关键词 非线性互补问题 非光滑 局部误差界 全局收敛 nonlinear complementarity problem nonsmooth local error bound global convergence
  • 相关文献

参考文献13

  • 1Fischer A. A special Newton-type optimization method[J]. Optimization,1992,24:269-284.
  • 2Chen B: Harke P T A non-interior-point continuation method for linear complementarity problems[ J]. SIAM J Matrix Anal Appl, 1993,14:1168-1190.
  • 3Kanzow C, Pieper H. Jacobian smoothing methods for nonlinear complementarity problems [ J ]. SIAM Journal on Optimization, 1999,9 : 342-373.
  • 4Kanzow C, Petra S. An inexact semismooth least square method for large scale complementarity problem[ J]. Optim Method Soft, 2004,19:309-325.
  • 5Sun D, Qi L. On NCP-Functions[ J]. Computational Optimization and Applications, 1999,13:201-220.
  • 6Facchinei F, Kanzow C. A nonsmooth inexact Newton method for the solution of large scale nonlinear complementarity problems [J]. Math Prog, 1997,76:493-512.
  • 7Gribik P. A central-cutting-plane algorithm for semi-infinite programming problems [ C ]. Hettich R ( ed. ), Semi-Infinite Programming. Springer-Verlag,1999. 66-82.
  • 8Dan H, Fukushima M, Yamashita N. Convergence Properties of the Inexact Levenberg-Marquardt Method under Local Error Bound Conditions [ J ]. Optimimization Methods and Software, 2002,11:605-626.
  • 9Burke J, Xu S. A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem [ J ], Math Prog,2000,87 : 113-130.
  • 10Qi L. Sun D, Zhou G. A new look at smoothing Newton methods for complementarity problems and box constrained variational inequalities [ J ]. Math Prog,2000,87 : 1-35.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部