期刊文献+

基于EMD和ANFIS的自适应噪声消除研究 被引量:2

STUDY ON AN ADAPTIVE NOISE CANCELLATION BASED ON EMD(EMPIRICAL MODE DECOMPOSITION) AND ANFIS(ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM)
下载PDF
导出
摘要 对于混入色噪声的混合信号,如果可以通过测量得到产生色噪声的白噪声,对白噪声进行非线性训练即可逼近色噪声,达到非线性滤波的目的。自适应模糊推理系统(adaptive neuro-fuzzy unference system,ANFIS)可以实现上述非线性逼近。文中在上述算法的基础上,提出一种EMD(empirical mode decomposition)-ANFIS的自适应色噪声消除方法,首先对混合信号进行EMD分解,得到各个内禀模态函数分量(intrinsic mode function,IMF),然后对分解得到的内禀模态分量进行ANFIS模糊消噪,最后对消噪后的各个分量信号进行叠加。由于所得内禀模态函数为近似平稳信号,且图形越来越趋于平缓,减小了ANFIS方法的逼近难度。在混合信号信噪比为2.8407dB时,经过EMD-ANFIS消噪后的估计误差比只经过ANFIS消噪后的估计误差减少11.74dB,证明EMD-ANFIS方法的有效性。 Useful signal is contaminated by colored noise which is formed from white noise, if the white noise could be measured, the colored noise would be approached by nonlinear training of white noise. This is a method of noise cancellation, and ANFIS(adaptive neuro-fuzzy inference system) could meet the demand. An adaptive noise canceling method named EMD(empirical mode decomposition)-ANFIS was presented. The method disassembled the mixed signal into some IMFs(intrinsic mode function) firstly, then these IMFs were de-noised by ANFIS separately, and the results could be added to form estimation of useful signal. It made the nonlinear approximation become easier because the IMFs were stationary nearly and placid. A mixed signal whose SNR was 2. 8407 dB was dealt with by ANFIS method and EMD-ANFIS method, the estimation error of the latter was 11.74 dB less than the former. This shows the validity of EMD-ANFIS method.
出处 《机械强度》 CAS CSCD 北大核心 2009年第2期186-189,共4页 Journal of Mechanical Strength
基金 国家自然科学基金(50475117) 天津市科技发展计划(06YFGZGX18200)资助项目~~
关键词 自适应噪声消除 自适应神经模糊推理系统 经验模态分解 内禀模态函数 非线性逼近 Adaptive noise cancellation Adaptive neuro-fuzzy inference system Fznpirical mode decomposition Intrinsicmode function Nonlinear approximation
  • 相关文献

参考文献7

二级参考文献23

  • 1Huang N E, Shen Zheng and Steven R L, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.Proc. R. Soc. Lond. A, 1998;454: 903--995.
  • 2Huang N E, Shen Zheng and Steven R L. A new view of nonlinear water waves: the Hilbert spectrum. Annu.Rev. Fluid Mech. , 1999 ;31: 417--457.
  • 3刘勇,非数值并行算法.2 遗传算法,1995年
  • 4Diebold F X, Lopez J A. Forecast evaluation and combination. NBER Technical Working Paper 192, National Bureau of Economic Research, 1996, Inc.
  • 5Maqalhaes M H, Ballini R, Molck P, Gomide F. Combining forecasts for nature streamflow prediction. Annual Conference of the North American Fuzzy Information Processing Society-NAFIPS, V 1, NAFIPS 2004-Annual Meeting of the North American Fuzzy Information Processing Society: Fuzzy Sets in the Heart of the Canadian Rockies, 2004.1329~1332.
  • 6Deng J L. Introduction to grey theory. Journal of Grey System,1989,(1):1~24.
  • 7Yao Albert W L, Chi S C, Chen J H. An improved Grey-based approach for electricity demand forecasting. Electric Power Systems Research,2003,(67):217~224.
  • 8Vapnik V N. The nature of statistical learning theory. New York, USA:Springer-Verlag,1995.
  • 9Chen B J, Chang M W, Lin C J. Load forecasting using support vector machines: a study on EUNITE competition 2001. Taiwan: Department of Computer Science and Information Engineering, Taiwan University,2002.1~11.
  • 10Cao LiJuan, Francis E H T. Financial forecasting using support vector machines. Neural Computing and Application,2001,(10):184~192.

共引文献108

同被引文献30

  • 1刘晓华.基于ANFIS的股市建模与预测[J].统计与咨询,2007(2):38-39. 被引量:2
  • 2王学敏,黄方林,陈政清.EMD方法在消除桥梁振动信号局部强干扰中的应用[J].机械强度,2005,27(1):33-37. 被引量:20
  • 3樊长博,张来斌,王朝晖,冀树德.基于EMD与功率谱分析的滚动轴承故障诊断方法研究[J].机械强度,2006,28(4):628-631. 被引量:21
  • 4胡劲松,杨世锡.基于自相关的旋转机械振动信号EMD分解方法研究[J].机械强度,2007,29(3):376-379. 被引量:27
  • 5Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [ J]. Proceedings of Royal Society of London A, 1998, A(454) : 903-995.
  • 6Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum [ J ]. Annual Review of Fluid Mechanics, 1999, 31(3): 417457.
  • 7Peng ZhiKe, Chu FuLei. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography[ J]. Mechanical Systems and Signal Processing,2004, 18:199 - 221.
  • 8S. Vafaei, H. Rahnejat. Indicated repeatable runout with wavelet decomposition (IRRWD) for effective determination of bearing- induced vibration[J]. Journal of Sound and Vibration, 2003, 260: 67 - 82.
  • 9Box G, Jenkins G . Time series analysis: Forecasting and control[M] .San Francisco: Holden-Day, 1976.
  • 10Engle RF. Autoregressive conditional heteroseedasticity with estimator of the variance of United Kingdom inflation [J].Econometriea, 1982,50(4):987-1008.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部