期刊文献+

CP^n(Q)的加权blowup及陈-阮上同调群 被引量:1

Weighted Blowup of CP^n(Q) and Chen-Ruan Cohomology Group
下载PDF
导出
摘要 对加权射影空间CPn(Q)进行了加权blowup,分析了blowup后的toric结构和orbifold结构,以及所有twisted sector的变化。用组合论的方法计算了blowup前后每个twisted sector的奇异上同调,并且分析了其陈-阮上同调群的变化。 The weighted projective space CP^n(Q) is blown up, and the toric structure and orbifold structure of the blowup is analyzed. The singular cohomology of each twisted sector is claculated by com-binatorics. The difference between the Chen - Ruan cohomology group of CP^n(Q) and ones of its blowup is also analyzed.
作者 林奕武
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期1-4,10,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10631050) 国家"973"计划资助项目(2006CB805905)
关键词 加权射影空 加权blowup 陈-阮上同调群 weighted projective space weighted blowup Chen- Ruan cohomology group
  • 相关文献

参考文献11

  • 1SATAKE I. On a generalization of manifold [ J ]. Proc Nat acd Sci U S A,1957,42:359 -363.
  • 2SATAKE I. The Gauss-Bonnet theorem of V-manifold [ J ]. Math Soc Japan, 1956,9:464 - 492.
  • 3ADEM A, LEIDA J, RUAN Y B. Orbifolds and Stringy topology[ M ]. Cambridge Tracts in Mathematics,2007.
  • 4CHEN W, RUAN Y. A new cohomology theory of orbifold [J]. Comm Math Phy,2004,248:1 -31.
  • 5GODINHO L. Blowing up symplectic orbifold [ J ]. Annals of Global Analysis and Geometry, 2001,20 ( 2 ) : 117 - 162.
  • 6RUAN Y. Cohomology ring of crepant resolutions of orbifolds [ C ]. arziv: math. AG/0108195.
  • 7FULTON W. Introduction to toric varictie [ M ]. Princeton University Press, 1993
  • 8CONRADS H. Weighted projective spaces and reexive simplices [ J ]. Manuscripta Mathematica, 2002,107 ( 2 ) : 215 - 227.
  • 9PODDAR M. Orbifold Hodge numbers of Calabi-Yau hypersurfaces [ J ]. Pacic J Math, 2003, 208 ( 1 ) : 151 - 167.
  • 10JIANG Y F. The chen-ruan cohomology of weightedrrojective spaces [ J ]. Canadian Journal Mathemat- ics, 2007, 59 (5): 981-1007.

同被引文献10

  • 1Satake I. On a generalization of the notion of manifold. [ J ]. Proceedings of the National Academy of Science of the United States of America, 1956,42 (6) :359 - 363.
  • 2Satake I. The Gauss - Bonnet theorem of V - manifold [J]. Mathematical Society of Japan, 1957, 9(4):464 - 492.
  • 3G~inho L, Blowing up symplectic orbifolds [ J ]. Annals of Global Analysis and Geometry,2001,20 (2) : 117 -162.
  • 4Adam A,Leida J, Ruan Y B. Orbifolds and stringy topology [ M ]. New York: Cambridge University Press,2007.
  • 5Chen W , Ruan Y. A new cohomology theory of orbifold [ J ]. Communications in Mathematical Physics, 2004, 248(1) : 1 -31.
  • 6Jiang Y F. The Chen - Ruan cohomology of weighted projective spaces [ J ]. Canadian Journal Mathematics, 2007,59(5) :981 - 1007.
  • 7Chen B, Hu S. A deRham model for Chen - Ruan cohomology ring of abelian orbifolds, [ J ]. Mathematische Annalen,2006, 336( 1 ) :51 - 71.
  • 8Ruan Y. Cohomology ring of crepant resolutions of orbifolds[ C ]// Gromov - Witten theory of spin curves and orbifolds. Providence: American Mathematical Society, 2006.
  • 9Kawasaki T. Cohomology of twisted projective spaces and lens complexes[ J ]. Mathematische Annalen, 1973, 206 (3) : 243 -248.
  • 10Griffiths P, Harris J, Principles of algebraic geometry [ M ]. New York: Wiley - Interscience, 1994.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部