期刊文献+

智能拉普拉斯分类器

The Intelligent Laplacian Classifier
下载PDF
导出
摘要 针对拉普拉斯分类器的核参数选择问题,通过首先假设窗的三个估计中核参数取不同的值,然后运用智能遗传算法对核参数进行优选,得到一种新的分类器——智能拉普拉斯分类器。多个基准数据集上的实验结果证明,智能拉普拉斯分类器相对普通拉普拉斯分类器和支持向量机而言,具有较高的分类精度和稳定性,是一种有效的分类方法。 Supposing the kernel parameters of the three Parzen window-based estimators are different and using intelligent genetic algorithm (IGA) to optimize these parameters, a novel classifier is developed the intelligent Laplacian classifier (TILC). The experimental results in several benchmark datasets indicate that the proposed TILC achieve higher classification accuracy and stable than the Laplacian classifier and standard support vector machine (SVM). Consequently, TILC provides a promising ahernative for classification.
作者 戴宏亮
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期14-19,共6页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10771220) 教育部高等学校博士点科研基金资助项目(SRFDP-20070558043)
关键词 核方法 拉普拉斯分类器 支持向量机 智能遗传算法 kernel methods the Laplacian classifier support vector machine intelligent genetic algorithm
  • 相关文献

参考文献16

  • 1PIERRE B,SOREN B. Bioinformatics: The machine learning approach [ M ]. 2nd ed. USA : arrangement with MIT through Arts & Licensing International, Inc,2001.
  • 2WEBB A R. Statistical pattern recognition [ M ]. John wiley and sons, LTD ,2002.
  • 3PARZEN E, On the estimation of a probability density function and the mode [ J ]. Annal Math Stat, 1962,32 : 1065 - 1076.
  • 4MIKA S, RATSCH G, WESTON J, et al. Fisher diseriminant analysis with kernels [ C ] //Proe IEEE Workshop Neural Netw. Signal Proeess. Madison, WI, 1999:41 - 48.
  • 5YANG J, FRANGI A F, YANG J Y, et al. KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(2) : 230 -244.
  • 6NELLO C, JOHN S T. An Introduction to support vector machines and other Kernel-based learning methods [ M ]. China Machine Press,2005.
  • 7VAPNIK V N. Statistical learning theory [ M ]. New York :Wiley, 1998.
  • 8VAPNIK V N. The Nature of Statistical Learning Theory [ M ]. New York : Springer-Verlag, 1995.
  • 9JENSSEN R, ERDOGMUS D. et al. The laplacian classi- fier [ J ]. IEEE Trandsactions on Signal Processing. 2007,55 (7) : 3262 - 3271.
  • 10MIKA S, RATSCH G, WESTON J, et al. Fisher discriminant analysis with kernels [ C ]//Proc IEEE Workshop Neural Netw Signal Process, 1999:41 -48.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部