期刊文献+

三次系统极限环及其稳定和分岔的一种算法

An Algorithm of Stability and Bifurcation of Limit Cycles for Cubic System
下载PDF
导出
摘要 引进适当的参数,求出该参数近似为零时系统的解答;以此解答为初值,给参数以小增量(即参数摄动);将平面三次多项式微分系统极限环相图的x坐标假设为广义谐函数;将y坐标和频率作富氏展开;相应于参数的增量,得到极限环振幅、偏心距以及y坐标和频率的富氏系数的增量;用谐波平衡法得到以这些增量为独立变量的线性代数方程组;求解该方程组,得到各相关增量;以这些增量与初值的和为下一参数增量步骤相应的初值,重复上述过程,直至参数还原至原系统为止,从而得到极限环及其频率、周期、稳定性指标,以及极限环关于参数分岔曲线的近似解析表达式。文末给出算例。 With a suitable parameter, the solution of the system is solved as this parameter equaled zero. This solution is taken as the initial value, and the parameter is given a small increment. The x coordinate of limit cycle phase portraits for planar cubic polynomial differential systems are supposed as the generalized harmonic function. And the y coordinate and the frequency of limit cycle are expanded as Fourier series. Corresponding to the increments of the parameter, the increment of the amplitude, eccentricity and the Fourier coefficients ofy coordinate and the frequency of limit cycle are obtained. The linear algebra equations about these increments are got with harmonic balance. Solving these equations, these increments are obtained. The procedure is repeated with the initial value of the next step as the sum of the increments and the initial value, until the parameter is returned to original state. And then the approximate analytical expressions of frequency, periodic, stability index and bifurcation of limit cycles about the parameter are calculated. An example is shown at the end.
作者 黄赪彪 刘佳
机构地区 中山大学工学院
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期27-30,35,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10672193)
关键词 平面三次多项式微分系统 极限环 稳定 分岔 算法 planar cubic polynomial differential systems limit cycle stability bifurcation algorithm
  • 相关文献

参考文献1

二级参考文献10

  • 1丰建文.Bogdanov-Takens系统的三次齐次扰动[J].数学杂志,2004,24(5):565-569. 被引量:4
  • 2岳喜顺.后继函数法与Bogdanov-Takens系统的二次扰动[J].应用数学学报,2006,29(5):838-847. 被引量:4
  • 3Perko L M. A global analysis of the Bogdanov-Takens system[ J]. SIAM J Appl Math, 1992,52(4) : 1172-1192.
  • 4Bogdanov R I. Bifurcation of the limit cycle of a family of plane vector fields[J]. Seiecta Math Soviet, 1981,1 : 373-387.
  • 5Bogdanov R I. Versal deformation of a singularity of a vector field on the plane in the case of zero eigenvalues[J]. Selecta Math Soviet, 1981,1 : 389-421.
  • 6Takens F. Forced oscillations and bifurcations[ J]. Applications of Global Analysis I, Comm Math Inst Rijksuniversitat Utrecht, 1974,3:1-59.
  • 7Kuznetsov Y. Elements of Applied Bifurcation Theory[M]. Vol 112. New York: Springer-Verlag, 1995.
  • 8WANG Duo, LI Jing, HUANG Min-hai, et al. Unique normal form of Bogdanov-Takens singularities [J]. Journal of Differential Equations ,2000,163(1):223-238.
  • 9niev niya D. On the limit cycles available from polynomial perturbations of the Bogdanov-Takens Hamiltonian[ J]. Israel Journal of Mathematics, 2000,115( 1 ) :269-284.
  • 10Chart H S Y, Chung K W,Xu Z.A perturbation-incremental method for strongly non-linear oscillators [ J]. Internat J Non-Linear Mech, 1995,31( 1 ) :59-72.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部