摘要
研究了Banach空间中含广义F—不变凸函数的多目标规划问题的对偶性。介绍了约束规格及引理1,讨论了这类多目标规划问题的wolfe型对偶和Mond-Weir型对偶,并在较弱F—不变凸的假设下获得了强对偶、弱对偶和其它一些对偶结果。
This paper studies the duality of the Multiobjective optimization problem involving generalized F-invex functions in Banach space. The constraint qualification and lemma 1 are introduced. The Wolfe type of duality and Mond-Weir type of duality are obtained. Strong and weak duaity theorems and other results are given under weaker F- invexity assumptions.
出处
《重庆建筑大学学报》
CSCD
1998年第1期97-101,共5页
Journal of Chongqing Jianzhu University
关键词
对偶
有效解
多目标规划
F-不变凸函数
duality, efficient solutions, F-type I of function, F-pseudo-type I of function, F-quasi-type I of function