期刊文献+

窗函数对信号稀疏特性的影响 被引量:1

Effect of Window Function on Signal's Sparse Characteristics
下载PDF
导出
摘要 由于信号的稀疏特性有效地用于盲信号分离中,所以稀疏特性受到普遍的关注.本文对常见的几种窗函数与DFT以后频谱稀疏特性的关系进行了分析研究.提出了基于泄漏频带宽度和统计有效泄漏谱线数量的两个信号稀疏特性评判依据,并根据此评判依据研究了常见几种窗函数对信号稀疏特性的影响,选出使信号稀疏特性最佳的最优窗.分析结果表明,信号非整周期截取时汉宁窗可以获得最佳稀疏特性.研究结论可为基于时频域稀疏特性的信号分离方法或其它信号处理方法的研究提供一种技术支持. The signal's sparse characteristic has got certain concern in recent years because of its usefulness in blind signal separation. The authors investigated the relations between the traditional window functions and the spectrum sparse characteristics after DFT, and put forward two sparse characteristicsr criterions based on the width of leakage spectrum frequency band and the number of effective spectrum lines. The influence of signal window functions on sparse characteristics on the basis of these two criterions is studied, and the optimal window function which can keep best sparse characteristic is selected. The analyzing results indicate that the Hanning window can get the best sparse characteristics in non-complete periodical interrupt. The conclusions can be expected to be a support in signal separation methods based on the sparse characteristics in time-frequency domain as well as other signal processing methods.
出处 《测试技术学报》 2009年第2期151-155,共5页 Journal of Test and Measurement Technology
基金 内蒙古工业大学科研基金资助项目(X200712)
关键词 窗函数 频谱泄漏 稀疏特性 评判依据 window function spectrum leakage sparse characteristics criterions
  • 相关文献

参考文献2

二级参考文献19

  • 1Bell and J Sejnowki.An information-maximisation approach to blind separation and blind deconvolution[J].Neural Compautation,1995,7 (6):1004-1034.
  • 2J F Cardoso.Blind signal separation:statistical principles[J].Proce IEEE,1998,90(8):2009 -2026.
  • 3Aapo Hyvarinen.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans Neural Networks,1999,10 (3):626-634.
  • 4Jutten C,Herault J.Blind separation of sources,part Ⅰ:an adaptive algorithm based on neuron mimetic architecture[J].Signal Processing,1991,24(1):1-10.
  • 5Cardoso J F,Souloumiac A.Blind beamforming for nonGaussian signals[J].Proc IEE Conf Radar and Signal Processing,1993,140(6):362-370.
  • 6J F Cardoso,P Comon.Independent component analysis,a survey of some algebraic methods[A].IEEE International Symposium Circuits and Systems[C].Atlanta:IEEE,1996.93 -96.
  • 7A Hyvarinen,Erlki Oja.Independent component analysis:algorithms and applications[J].Neural Networks,2000,13(4):411-430.
  • 8S Amari,A Cichoki,H H Yang.A new learning algorithm for blind source separation[J].Adv Neural Inf Process Syst,1996,8:757-763.
  • 9B A Pearlmutter,L C Parra.Maximum likelihood blind source separation:a context-sensitive generalization of ICA[J].Adv Neural Inf Process Syst,1997,9:613 -619.
  • 10Kari Torkkola.Blind separation of delayed sources based on information maximization[A].ICASSP[C].Atlanta:IEEE,1996.3509-3512.

共引文献13

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部