期刊文献+

基于贝叶斯网络的控制回路关联故障诊断 被引量:2

Cross-correlation fault diagnosis in control loop based on Bayesian network
下载PDF
导出
摘要 在综合控制回路不同的监控算法组成一个控制回路监控系统时,系统出现的故障彼此之间可能会存在相互关联的情况,针对这一问题提出一种故障诊断方法.该方法利用贝叶斯网络强大的不确定性表达能力和学习推理能力,将所有监控器组成一个控制回路的性能监控诊断系统,当控制回路在不确定的环境下操作出现故障时,即使各个监控器工作性能低下,也能够及时准确地进行诊断.对该方法进行了应用仿真,仿真结果表明该方法能够对回路故障之间存在的交叉关联问题进行很好地辨识,精确地推理出回路各个组成部分出现故障的概率,验证了该方法具有较高的诊断精度. When synthesizing different monitoring algorithms to form a control loop diagnostic system,the faults in the system may have cross-correlation. This paper proposes a method to solve this problem. The method takes the advantages of Bayesian network such as uncertain expression abilities and strong learning and reasoning abilities,and synthesizes different monitors to form a control loop performance monitoring and diagnosis system. When the cross-correlation faults occur in the control loop which is operated in an uncertain environment,it can give an appropriate inference timely and accurately even if the performance of each individual monitor is low. A simulation example of the method is given. Simulation results show that the method can solve the problem that the faults may have cross-correlation and can inference accurately the probability of failure for every part in the control loop. It shows that the proposed method is of highly diagnostic accuracy.
作者 赵顺毅 刘飞
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第S1期277-281,共5页 Journal of Southeast University:Natural Science Edition
基金 国家高技术研究发展计划(863计划)资助项目(2007AA04Z198)
关键词 贝叶斯网络 交叉相关 控制回路 故障诊断 Bayesian network cross-correlation control loop fault diagnosis
  • 相关文献

参考文献9

  • 1刘明辉,王磊,党林阁,石景岚.非确定先验信息的贝叶斯网结构学习方法[J].计算机工程,2010,36(5):165-167. 被引量:11
  • 2周忠宝,马超群,周经伦.基于贝叶斯网络的事故序列分析[J].哈尔滨工业大学学报,2009,41(9):191-193. 被引量:1
  • 3李俭川,陶俊勇,胡茑庆,温熙森.基于贝叶斯网络的智能故障诊断方法[J].中国惯性技术学报,2002,10(4):24-28. 被引量:18
  • 4Thornhill N F,Shah S L.New directions in control loop assessment and diagnosis. Computing and Control Engineer-ing . 2005
  • 5Venkatasubramanian V,Rengaswamy R,Yin K,et al.A review of process fault detection and diagnosis Part I: quantitative model-based methods. Computers and Chemistry . 2003
  • 6Venkat Venkatasubramanian,Raghunathan Rengaswamy,Surya N Kavuri.A review of process fault detection and diagnosis Part II: Qualitative models and search strategies. Computers and Chemistry . 2003
  • 7Venkatasubramanian V,Rengaswamy R,Kavuri S N,et al.A review of process fault detection and diagnosis: Part Ⅲ: Process history based methods. Computers and Chemistry . 2003
  • 8Volk, U,Knieseb, D. W,Hahna, R. et al.Optimized multivariable predictive control of an industrial distillation column considering hard and soft constraints. Control Engineering Practice . 2005
  • 9B Huang.Bayesian methods for control loop monitoring and diagnosis. Journal of Process Control . 2008

二级参考文献19

  • 1陶俊勇,温熙森,杨定新,陶利民.车载挠性SINS/GPS组合导航系统研究[J].中国惯性技术学报,1999,7(4):17-20. 被引量:8
  • 2ANDREWS J D, DUNNETT S J. Event - tree analysis using binary decision diagrams [ J ]. IEEE Transactions on Reliability, 2000, 49(2) : 230-238.
  • 3BOBBIO A, PORTINALE L, MINICHINO M, et al. Improving the analysis of dependable systems by mapping fault trees into bayesian networks [ J ]. Reliability Engineering and System Safety, 2001, 71(3): 249- 260.
  • 4SIU N. Risk assessment for dynamic systems: an overview [ J ]. Reliability Engineering and System Safety, 1994, 43:43 -73.
  • 5KADIE C M, HOVEL D, HORVITZ E. MSBNx: a component-centric toolkit for modeling and inference with bayesian networks [R], [S. L. ]:Microsoft Corporation, 2001.
  • 6Cooper G F, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks Form Data[J]. Machine Learning, 1992, 9(4): 309-348.
  • 7Heckerman D, Geiger D, Chickering D M. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data[J]. Machine Learning, 1995, 20(3): 197-243.
  • 8Stephenson T A. An introduction to bayesian network theory and usage[R]. IDIAP-RR 00-03, 2000.
  • 9Coper G F. The computational complexity of probabilistic inference using Bayesian belief networks[J]. Artificial Intelligence. 1990, 42(3): 393-405.
  • 10Lepar V, Shenoy P P. A comparison of Lauritzen and Spiegelhalter, Hugin and Shafer and Shenoy architectures for computing marginals of probability distributions[A]. Proc. On Uncertainty in artificial Intelligence[C], Morgan Kaufmann Publishers, 1998: 328-337.

共引文献27

同被引文献12

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部