期刊文献+

基于多类支持向量机的基本信度分配确定方法 被引量:2

Method of determining BBA based on multi-class support vector machine
下载PDF
导出
摘要 在多传感器信息融合中,证据理论是一种重要方法,但其基本信度分配的确定已成为实际应用的瓶颈问题。针对此,提出了一种基于多类支持向量机的基本信度分配确定方法,以Platt后验概率为基础,将两类后验概率扩展到多类,并对后验概率形式的软判决进行了改进,从而构造了信度分配函数。通过仿真对比分析验证了该方法的合理性和有效性。 Evidence theory was an important method in the field of multi-sensor information fusion,but its BBA was dif-ficult to determine so that it became a bottleneck in practical applications.Therefore,a novel method of determining BBA based on multi-class support vector machine was proposed.On the basis of Platt posteriori probability,the two-class pos-teriori probabilities were extended to multi-class in the method.And then the soft decision in the form of posteriori prob-ability was improved and the BBA function was constructed.The rationality and effectiveness of the proposed method are verified by the simulation analysis finally.
出处 《通信学报》 EI CSCD 北大核心 2010年第S1期100-104,共5页 Journal on Communications
基金 军队预研基金资助项目(LY200838014) 中国人民解放军重点科研计划基金资助项目(KJ08062)~~
关键词 多类支持向量机 基本信度分配 证据理论 Platt后验概率 multi-category support vector machines basic belief assignment evidence theory Platt posteriori probability
  • 相关文献

参考文献10

  • 1周皓,李少洪.支持向量机与证据理论在信息融合中的结合[J].传感技术学报,2008,21(9):1566-1570. 被引量:23
  • 2唐士杰,高社生,邢化玲.D-S理论与神经网络相结合的信息融合模型研究[J].传感技术学报,2007,20(8):1815-1820. 被引量:8
  • 3QU D C,MENG X W,HUANG J,et al.Research of artificial neuralnetwork intelligent recognition technology assisted by dempster-shaferevidence combination theory. 7th International Conference onSignal Processing . 2004
  • 4LI MINGKUN,SETHI I K.SVM-Based classifier design with con-trolled confidence. 17th International Conference on Patten Recog-nition(ICPR 2004) . 2004
  • 5Vapnik VN.An overview of statistical learning theory. IEEE Transactions on Neural Networks . 1999
  • 6F Wu,C Lin,R Weng.Probability estimates for multi-class support vector machines by pairwise coupling. J Mach Learn Res . 2004
  • 7Chih-Wei Hsu,Chih-Jen Lin.A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks . 2002
  • 8Krebel U.Pairwise classification and support vector machines. Advances in Kernel Methods: Support Vector Learning . 1999
  • 9Wahba G.Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. Advances in Kernel Methods-Support Vector Learning . 1999
  • 10Tipping,M.E.Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research . 2001

二级参考文献15

  • 1尹慧琳,王磊.D-S证据推理改进方法综述[J].计算机工程与应用,2005,41(27):22-24. 被引量:26
  • 2Inagki T.Interdependece between Safety-Control Policy and Multiple-Sensor Schemes via Dempster-Shafer Theory[J].IEEE Transtions on Reliability,1991,40(2):182-188.
  • 3Voorbraak F.On the Justification of Dempster's Rule of Combination[J].Artificial Intelligence,1991,48(2):171-197.
  • 4Klawonn F,Schwecke E.On the Axiomatic Justification of Dempster's Rule of Combination[J].Intell Syste,1990,(7):469-478.
  • 5Peter Walley.Measures of Uncertainty in Expert Systems[J].Artificial Intelligence,1996,83(1):1-58.
  • 6Yager R R.On the Aggregation of Prioritized Belief Structures[J].IEEE Transactions on Syst,Man and Cybernetics,1996,26(6):708-717.
  • 7Thierry Denoeux.A Neural Network Classifier Based on Dempster-Shafter Theory[J].IEEE Transactions on Systems Man and Cybernetics,2000,10(2):131-150.
  • 8Nello Cristianini,John Shawe-Taylor,李国正,王猛,曾华军译.支持向量机导轮[M].电子工业出版社,2004.
  • 9Vladimir N. Vapnik, An Overview of Statistical Learning Theory[J]. IEEE Transactions on Neural Networks, September, 1999,10(5) :988-999.
  • 10Xu Lijia, Chen Yangzhou, Cui Pingyuan. Improvement of D-S Evidential Theory in Multisensor Data Fusion System[C]. Proceeding of the 5th World Congress on Intelligent Control and Automation” June 15-19,2004, Hangzhou, P. R. China: 3124-3128.

共引文献29

同被引文献13

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部