期刊文献+

短波突发信号盲检测算法的对比研究 被引量:14

Comparative research on blind detection algorithm of HF burst signal
下载PDF
导出
摘要 根据短波串行突发MPSK信号的格式和特点,分别提出了2种短波突发信号盲检测算法。对于无导频突发信号,提出了一种基于滑动窗高阶累积量的自适应门限检测算法。该算法采用高阶累积量作为检测函数来区分有用信号和噪声,通过设置检测函数集自适应调整门限值,采用长度控制与状态转换的判决机制降低检测函数的抖动对判决结果的影响。对于有导频突发信号,采用归一化瞬时功率谱密度的最大值来捕获导频脉冲,再结合基于高阶累积量的自适应门限算法检测出突发信号的结束点。仿真实验及对实际信号的检测结果表明,文中提出的2类算法检测性能好、便于实时处理,可以较好地运用于实际工程。 Two kinds of blind detection algorithm of HF burst signal were proposed respectively,which were based on the format and characteristics of HF serial burst MPSK signal.For the burst signal of pilot-less frequency,a kind of self-adaptive threshold detection algorithm was proposed,which was based on the higher-order cumulant of sliding win-dow.The algorithm used higher-order cumulant as detection function to distinguish the useful signal and noise.By setting the self-adaptive adjustment threshold of detection function collection,the adjudication mechanism of length control and state transition were adopted to reduce the effect of dithering of detection function on the judgment results.For the burst signal of pilot frequency,the maximum value of uniformization instantaneous power spectrum density was used to cap-ture the pulse of pilot frequency.Then combing the self-adaptive threshold algorithm based on the higher-order cumulant,it was detected the end point of proruption signal.Simulation experiment and the detecting result of actual signal show the two kinds of algorithm put forward have good performance.And they are convenient for real-time dispose,which can be applied in the actual engineering.
出处 《通信学报》 EI CSCD 北大核心 2010年第S1期111-116,共6页 Journal on Communications
关键词 盲检测算法 短波突发信号 高阶累积量 自适应门限检测 瞬时功率谱密度 blind detection algorithm HF burst signal higher-order cumulant self-adaptive threshold detection instan-taneous power spectrum density
  • 相关文献

参考文献8

二级参考文献28

  • 1李彤,沈兰荪.全数字接收机的结构及关键技术[J].电信科学,1995,11(2):25-31. 被引量:11
  • 2王呈贵,阚春荣.DSSS信号在低SNR下的同步捕获算法[J].系统仿真学报,2006,18(4):972-974. 被引量:4
  • 3GolubGH VanLoanCF 袁亚湘译.矩阵计算[M].北京:科学出版社,2001..
  • 4WIDROW B, JOHN R G. Adaptive noise cancelling : principles and applications[J]. Proc of the IEEE, 1975,63(12): 1692-1716.
  • 5ZERGUINE A, COWAN C F, BETTAYEB M. Adaptive echo cancellation using least mean mixed-norm algorithm[J]. IEEE Tram on Signal Processing,1997, 45(5):1340-1342.
  • 6AHMEN N, VIJAYENDRA S. An algorithm for line enhancement[J]. Proc of the IEEE, 1982,70(12):1459-1460.
  • 7ANDERSON J M, GIANNAKIS G B. Harmonic retrieval using higher-order statistics: a deterministic formulation[J]. IEEE trans on Signal Processing, 1995, 43(8): 1880-1889.
  • 8MENDEL J M. Tutorial on higher-order statistics (spectra) in signal processing and systems theory: theoretical results and some applicatiolls[J]. Proc of IEEE, 1991,79(3): 278-305.
  • 9IBRANIM H M, GHARIEB R. Two-dimensional cumulant-based adaptivo imaging enhancer[J]. IEEE Trans on Signal Processing,1999, 46(2):593-596.
  • 10SWAMI A, JERRY M. Cumulant-based approach to the harmonic retrieval and related problems[J]. IEEE Trans on Signal Processing,1997, 39(5): 1099-1109.

共引文献60

同被引文献82

引证文献14

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部