期刊文献+

基于压缩感知的癌症基因表达数据分类 被引量:7

Classification of cancer gene expression data based on compressed sensing
下载PDF
导出
摘要 提出了一种基于压缩感知原理的分类方法.把癌症基因表达数据分类问题归结为求解测试样本对于训练样本的稀疏表示问题,通过求解L1范数意义下的最优化问题来实现.提出的方法与Bagging神经网络和SVM的识别效果做了对比和分析,实验证明基于压缩感知的分类取得了相对较好的效果. A classification method based on compressed sensing theory is proposed.The cancer gene expression classification problem was reduced to the problem as how to represent the testing samples from training data.The classification result thus could be achieved by solving the L1 norm-based optimization problem.We compared the effectiveness of this method with Bagging neutral network and SVM.Experiment results show that the compressed sensing-based classification method performs more effective.
出处 《中国计量学院学报》 2012年第1期70-74,共5页 Journal of China Jiliang University
基金 国家自然科学基金资助项目(No.60842009) 浙江省自然科学基金资助项目(No.Y1110342)
关键词 基因表达数据 压缩感知 稀疏表示 L1范数 gene expression data compressed sensing sparse representation L1 norm
  • 相关文献

参考文献16

二级参考文献208

共引文献441

同被引文献58

  • 1林亚平,刘云中,周顺先,陈治平,蔡立军.基于最大熵的隐马尔可夫模型文本信息抽取[J].电子学报,2005,33(2):236-240. 被引量:48
  • 2高俊,徐永业,姚成.近红外光谱法测定汽油中的芳烃含量[J].南京工业大学学报(自然科学版),2005,27(3):51-53. 被引量:10
  • 3YI Jianqiang,WANG Qian,ZHAO Dongbin,et al.BP neural network prediction-based variable-period sampling approach for networked control systems[J].Applied Mathematics and Computation,2007,185 (2):976-988.
  • 4HUANG Guangbin,CHEN L,SIEW C K.Universal approximation using incremental constructive feedforward networks with random hidden nodes[J].Neural Networks,2006,17(4):879-892.
  • 5HAN Fei,YAO Haifen,LING Qinghua.An improved extreme learning machine based on particle swarm optimization[J].Bio-Inspired Computing and Applications Lecture Notes in Computer Science,2012,6840:699-704.
  • 6CHANG ChihChung,LIN Chihjen.LIBSVM:a library for support vector machines[EB/OL]// (2014-01-05)[2012-11-16].http://www.Csie.ntu.Edu.tw/cj lin/libsvm.
  • 7Liu F;Kong W W;Tian T.查看详情[J],{H}TRANSACTIONS OF THE ASABE2012(4):1631.
  • 8Li J;Xie W X;Pei J H.查看详情[J],{H}SIGNAL PROCESSING2012(5):645.
  • 9Candes E;Romberg J;Tao T.查看详情[J],IEEE Transaction Information Theory2006(4):489.
  • 10Donoho D;Tsaig Y.查看详情[J],{H}SIGNAL PROCESSING2006(3):533.

引证文献7

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部