摘要
对爆炸荷载作用下的单自由度系统运动微分方程进行求解,推导了弹塑性各阶段运动微分方程的通解,由此得到位移、速度、加速度的时程轨迹表达式。通过对表达式进行分析,得到弹性结构系统产生的最大位移及对应时刻的变化规律,以及弹塑性结构系统在塑性阶段及回弹阶段位移及抗力的变化规律。最后将通解法应用于单层抗爆控制室的设计,并与等效静力方法和动力数值积分方法的计算结果进行比较,验证了该方法的准确性和实用性。
In this paper,the dynamic equilibrium differential equations for single degree of freedom systems subjected to blast loading are solved and the general solutions are deducted for the elastic and plastic phase,which includes the displacement,velocity and acceleration time history trace functions.Based on the analyses for these functions,the maximum displacement and corresponding time of elastic structural system are deducted and the changing law characteristic of displacement and bending resistance time history trace function of elastic-plastic structural system is also studied.The general solutions are used for the design of a one-story blast resistant building and the analysis results are consistent with the results of the equivalent static method and numerical integration method,which proves these general solutions accurate and applicable.
出处
《工业建筑》
CSCD
北大核心
2010年第S1期201-206,273,共7页
Industrial Construction
关键词
抗爆设计
单自由度系统
运动微分方程
动力时程分析
时程轨迹
blast resistant design
SDOF systems(single degree of freedom systems)
dynamic equilibrium differential equation
dynamic time history analyses
time history traces