摘要
交变方向隐式时域有限差分(ADI-FDTD)能够克服传统时域有限差分算法中稳定性条件对时间步长的限制,从而提高计算效率,但是在大步长时其误差较大。ER(低误差)-ADI-FDTD方法通过补偿截断误差项,提高了计算精度,但是目前仅给出二维非色散条件下的形式。在ER-ADI-FDTD的基础上,提出了一种色散介质中的低误差D-ER-ADI-FDTD算法,推导出了完整的三维计算公式。最后通过计算和结果比较对算法进行检验。
The alternating direction implicit finite-difference time-domain(ADI-FDTD)method has been proposed to overcome stability limitations in conventional FDTD methods.Despite its high efficiency,the ADI-FDTD method suffers significant errors at large time steps.The ER(error reduced)-ADI-FDTD method increases accuracy without much computation addition,by compensating truncation errors,but only two dimensional and non-dispersive cases are considered.In this paper,an error reduced ADI-FDTD method for Debye dispersive media is proposed based the original ER-ADI-FDTD,complete three dimensional equations are derived.Calculation results are checked and compared with existing methods.
出处
《微波学报》
CSCD
北大核心
2010年第S1期51-54,共4页
Journal of Microwaves
关键词
交变方向隐式
时域有限差分
低误差
色散介质
alternating direction implicit
finite-difference time-domain
error reduced
dispersive media