期刊文献+

弱阻尼随机Kirchhoff方程的随机吸引子 被引量:2

Random attractor for weakly damped stochastic Kirchhoff equation
原文传递
导出
摘要 讨论了一类弱阻尼随机Kirchhoff方程解的存在唯一性,证明了此类方程随机紧吸引子的存在性. It is discussed that the existence and uniqueness of solutions of the weakly damped stochastic Kirchhoff equation.It is proved that the existence of random attractor for such an equation.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第S2期101-108,112,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(10861014)
关键词 弱阻尼随机Kirchhoff方程 随机吸引子 WIENER过程 weakly damped stochastic Kirchhoff equation random attractor Wiener process
  • 相关文献

参考文献11

  • 1Hans Crauel,Arnaud Debussche,Franco Flandoli.Random attractors[J]. Journal of Dynamics and Differential Equations . 1997 (2)
  • 2Hans Crauel,Franco Flandoli.Attractors for random dynamical systems[J]. Probability Theory and Related Fields . 1994 (3)
  • 3Rene Carmona,David Nualart.Random non-linear wave equations: Smoothness of the solutions[J]. Probability Theory and Related Fields . 1988 (4)
  • 4SHEN Zhong-wei,,ZHOU Sheng-fan,SHEN Wen-xian.One-dimensional random attractor and rotation numberof the stochas-tic damped sine-Gordon equation. . 2010
  • 5BATES W P,LUKN,WANG B X.Random attractors for Steochastic reaction-diffusions equations on unbounded domains. Journal of Differential Equations . 2009
  • 6FAN X.Random attractor for a damped sine-Gordon equation with white noise. Pacific Journal of Mathematics . 2004
  • 7G. Kirchhoff.Vorlesungen uber Mechanik. . 1883
  • 8Pazy A.Semigroups of Linear Operators and Applications to Partial Differential Equations. Journal of Applied Mathematics . 1983
  • 9Ladde G S,Lakshmikantham V,Zhang B G.Oscillation Theory of Differential Equations withDevisting Arguments. . 1987
  • 10Arnold L.Random Dynamical Systems. . 1998

同被引文献15

  • 1戴正德,郭柏灵.INERTIAL FRACTAL SETS FOR DISSIPATIVE ZAKHAROV SYSTEM[J].Acta Mathematicae Applicatae Sinica,1997,13(3):279-288. 被引量:6
  • 2WANG Xiao-hu, LI Shu-yong, XU Dao-yL Random attractors for second -order stochastic lattice dynamical systems [ J ]. Non- linear Analysis, 2010,72 : 483-494.
  • 3CRAUEL H, DEBUSSCHE A, FLANDOLI F. Random attractors [ J ]. Journal of Dynamics and Differential Equations, 1997,9 (2) :307-341.
  • 4DEBUSSCHE A. Hausdorff dimension of a random invariant set [ J ]. J Math Pures Appl, 1998,77 (10) :967-988.
  • 5CARMONA R, NUALART D. Random nonlinear wave equations : Smoothness of the solutions [ J ]. Probability Theory and Re- lated Fields, 1988,79:469-508.
  • 6CARD T C. Introduction to stochastic differential equations[ M ]. New York:Marcel Dekker, 1987.
  • 7TEMAM R. Infinite - dimensional dynamical systems in mechanics and physics [ M ]. New York: Appl Math Sci, Springer - Verlag, 1997,68 : 21-22.
  • 8ROBINSON J C. Stability of random attractors under perturbation and approximation [ J ]. J Differential Equations, 2002,186 (2) :652-669.
  • 9PRATO G D, DEBUSSCHE A. Stochastic Cahn - Hilliard equation [ J ]. Nonlinear Analysis, 1996,26 (2) : 241-263.
  • 10贾澜,马巧珍.基尔霍夫型吊桥方程指数吸引子的存在性[J].四川师范大学学报(自然科学版),2018,41(2):185-189. 被引量:6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部