摘要
利用向量场通量方法给出平面系统极限环存在性与个数以及局部Hopf分支问题的判定定理,并将其物理意义加以说明,得到只含有1个奇点的平面N(N2)次多项式系统最多有N个极限环的结论,改善了Hilbert第16个问题的研究现状.同时揭示出该方法的局限性.最后给出几个特例并结合数值模拟对判定定理的可行性加以验证.
The judgement theorems are given by the method of flux quantity of vector field for the existence ofp lanar systems' limit cycles and its numbers,then its physical meaning can be explained and it is shown that N-order planar polynomial systems of only one singularity have at most N limit cycles for Hilbert 16th current research problems improved. Meanwhile,the limitation of the method has been announced. Finally,some spacial examples are given by combining numercial stimulation for checking the theorems' feasibility.
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第S2期129-135,共7页
Journal of Yunnan University(Natural Sciences Edition)
基金
国家自然科学基金资助项目(10905047)
西北大学研究生自主创新基金资助项目(08Y2231)