期刊文献+

关于正切换系统的共同线性copositive Lyapunov函数 被引量:2

On Common Linear Copositive Lyapunov Functions for Switched Linear Systems
下载PDF
导出
摘要 研究了正线性系统的共同线性copositive Lyapunov函数。首先,基于几何性质给出了关于一对二阶正线性系统的定理的另一种证明。通过新的证明方法,把结果推广到有限个二阶正线性系统的情况.然后对三阶情况给出了一个结果。最后,对高阶的正线性系统给出了一些结果。 The common linear copositive Lyapunov functions of positive linear systems is researched.Firstly,a theorem on pairs of second order positive linear systems is presented,and another proof of this theorem by means of properties of geometry is given.Based on the process of the proof,the results are extended to a finite number of second order positive linear systems.Then this result is extended to three order systems.Finally,for higher order systems,some results on common linear copositive Lyapunov functions are given.
作者 陈征 高岩
出处 《控制工程》 CSCD 北大核心 2010年第S1期14-17,共4页 Control Engineering of China
基金 国家自然科学基金资助项目(10671126) 上海市重点学科建设基金资助项目(S30501) 上海市研究生创新基金资助项目(JWCXSL0901)
关键词 正线性系统 切换系统 共同线性copositive LYAPUNOV函数 positive linear systems switched systems common linear copositive Lyapunov functions
  • 相关文献

参考文献12

  • 1Farina L,,Rinaldi S.Positive linear systems. Wiley Inter-science Series . 2000
  • 2Haddad W,Chellaboina V,August E.Stability and dissipativitytheory for non-negative dynamical system:A thermodynamic frame-work for biological and physiological systems. proceedingsof IEEE conference on decision and control . 2001
  • 3Berman A,Plemmons R.Non-negative matrices in the mathemati-cal science. SIAMClassics in Applied Mathematics . 1994
  • 4Gurvits L,,Samorodnitsky A.A note on common quadratic Lya-punov functions for linear inclusions:exact results and open prob-lems. Decision and Control . 2005
  • 5Mason O.Switched systems,onvex cones and common Lyapunovfunctions. . 2004
  • 6Cheng D,Guo L,Huang J.On quadratic Lyapunov functions. IEEE Transactions on Automatic Control . 2003
  • 7L. Benvenuti,L. Farina."Positive and compartmental systems,". IEEE Transactions on Aerospace and Electronic Systems . 2002
  • 8Metzler,L.Stability of multiple markets: the Hicks conditions. Econometrica . 1945
  • 9Shorten,R. N.,Narendra,K.Necessary and Sufficient Conditions for the Existence of a Common Quadratic Lyapunov Function for a Finite Number of Stable Second Order Linear Time-Invariant Systems. Int. J. Adaptive Control Signal Processing . 2002
  • 10C. King,& R. Shorten.A singularity test for the existence of common quadratic Lyapunov functions for pairs of stable LTI systems. Proceedings of 2004 American Control Conference . 2004

同被引文献18

  • 1董亚丽,秦化淑.三阶系统族的共同二次Lyapunov函数[J].控制理论与应用,2006,23(2):235-239. 被引量:2
  • 2Agrachev A A, Liberzon D. Lie-algebraic stability criteria for switched systems[J]. SIAM J of Control Optimiza tion,g001,40(1) :253-270.
  • 3Liberzon D, Hespanha J P, Morse A. Stability of switched linear systemsa Lie-algebraric condition[J]. Systems Control Letters, 1999,37(3) : 117-122.
  • 4Cheng D,Guo L, Huang J. On quadratic Lyapunov func- tion[J]. IEEE Transon Automatic Control, 2003,48(5): 885-890.
  • 5Yedavallir K,Sparks A. Condition for the existence of a common Quadratic Lyapunov function via stability anal- ysis of matrix families[C]//Proc of American Control Conference, Anchorage, Alaska : IEEE Press, 2006 : 1296- 1301.
  • 6Lin H, Antsaklis P J. Stability and stabilizability of switchedlinear systemsa survey of recent results[J]. IEEE Tran- son Automatic Control, 2009,54 (2) :308-322.
  • 7Laffey T,Smigoe H. Tensor conditions for the existence of a common solution to the Lyapunov equation[J]. Lin ear Algebra and its Applications,2007,420(3) :672 -685.
  • 8Margaliot M,Branicky M S. Nice teachability for planar bilinear control systems with applications to planar linear switched systems[J]. IEEE Transon Automatic Control, 2009,54(6) :1430-1435.
  • 9Farina L, Rinaldi S. Positive Linear Systems[M]. Wiley Interscience Series, 2000.
  • 10Benvenuti L, Farina L. Positive and compartmental systems[J]. IEEE Transactions on Automatic Control, 2002, 47(2): 370-373.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部