期刊文献+

多传感器时滞系统数据丢失时滤波融合算法 被引量:3

Fusion of Multi-sensor Time-delay Systems with Random Data Loss
下载PDF
导出
摘要 实际的工程项目中经常涉及到多传感器时滞系统,数据在传输中不仅存在着过程、测量噪声的干扰,还出现了丢失现象。为了获得准确的状态信息,需要研究测量数据发生随机丢失的多传感器时滞的信息融合问题。基于矩阵加权线性最小方差融合算法,对存在数据随机丢失的多传感器线性定常离散时滞系统,给出了一种增广分布式最优信息融合卡尔曼滤波器,并推导了任意2个传感器子系统之间的滤波误差互协方差阵计算公式。最后结合恒温控制系统实例,以温控中心的数据融合为背景,同时基于多传感器实时数据融合系统,分别对单传感器和双传感器情况进行仿真实验。仿真结果表明,分布式融合估计具有较高的精度,且易于故障检测和分离。 When data packets transmit in the multi-sensor network,the observation measurements with various noises and data loss are gotten in a random fashion.In order to get the exact state information,it is necessary to study the information fusion of multi-sensor time-delay system with random data loss.Based on optimal information fusion criterion weighted by matrix,an augmentation distributed weighted fusion optimal Kalman filter is proposed for linear time-invariant delayed systems with random data loss.The cross-covariance matrix of fdtering errors between any two-sensor subsystems is derived for time-delay system.Distributed fusion estimator could improve accuracy and easy for fault detection and separation.Its effectiveness can be showed by a simultion example.
出处 《控制工程》 CSCD 北大核心 2010年第S2期104-107,123,共5页 Control Engineering of China
基金 上海市基础研究重点资助项目(09JC1408000)
关键词 卡尔曼滤波 时滞系统 多传感器 信息融合 Kalman filter time-delay system multi-sensor information fusion
  • 相关文献

参考文献11

  • 1邓自立,高媛.按对角阵加权信息融合Kalman滤波器[J].控制理论与应用,2005,22(6):870-874. 被引量:5
  • 2邓自立,孙小君.多传感器分布式协方差信息融合Kalman滤波理论[J].科学技术与工程,2005,5(12):762-769. 被引量:7
  • 3孙书利,邓自立.多传感器线性最小方差最优信息融合估计准则[J].科学技术与工程,2004,4(5):334-336. 被引量:31
  • 4孙书利,崔平远.多传感器标量加权最优信息融合稳态Kalman滤波器[J].控制与决策,2004,19(2):208-211. 被引量:52
  • 5Yan J,Lu X,Wang H X,et al.Optimal information fusion kalman filtering for discrete-time systems with time-delay sensors. Intelligent Control and Automation,7th World Congress . 2008
  • 6Lu X,,Wang W,Zhang H S,et al.Robust kalman filtering for discrete -time systems with measurement delay. IEEE Transactions on circuits and systemsⅡ,Express Briefs . 2006
  • 7Carlson N A.Federated square root filter for decentralized parallel processes. IEEE Transactions on Aerospace and Electronic Systems . 1990
  • 8D. Willncr,etal.Kalman filter algorithms for Multi-sensor System. Proceedings of IEEE Conference on Decision and Control . 1976
  • 9Wang H Q,Zhang H S,Duan G R.Kalman filtering for descriptor systems with current and delayed measurements. International Conference on Control, Automation, Robotics and Vision . 2004
  • 10S.Pornsarayouth,M.Wongsaisuwan.Sensor Fusion of Delay and Non-delay Signal using Kalman Filter with Moving Covariance. Proc.of the 2008 IEEE Int.Conf.on Robotics and Biomimetics . 2009

二级参考文献12

  • 1[1]Carlson N A. Federated square root filter for decentralized parallel processes. IEEE Trans Aerospace and Electronic Systems, 1990; 26(3) :517-525
  • 2[2]Kim K H. Development of track to track fusion algorithm. Proceeding of the American Control Conference, Maryland, June 1994: 1037-1041
  • 3邓自立 祁荣宾.多传感器信息融合次优稳态Kalman滤波器[J].中国学术期刊文摘(科技快报),2000,6(2):183-184.
  • 4KIM K H.Development of track to track fusion algorithm [C]//Proc of American Control Conference.Maryland:[s.n.],1994:1037-1041.
  • 5SUN Shuli,DENG Zili.Multi-sensor optimal information fusion Kalman filter [J].Automatica,2004,40(6):1017-1023.
  • 6ZHU Yunmin,YOU Zhisheng,ZHAO Juan,et al.The optimality for the distributed Kalman filtering fusion [J].Automatica,2001,37(12):1489-1493.
  • 7SAHA R K,CHANG K C.An efficient algorithm for multisensor track fusion [J].IEEE Trans on Aerospace and Electronic Systems,1998,34(1):200-210.
  • 8SUN Shuli.Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor [J].Automatica,2004,40(7):1447-1453.
  • 9程云鹏.矩阵论[M](第二版)[M].西安:西北工业大学出版社,2001..
  • 10邓自立,马建为,高媛.两传感器自校正信息融合Kalman滤波器[J].科学技术与工程,2003,3(4):321-324. 被引量:12

共引文献87

同被引文献20

  • 1张湘,肖建.存在数据丢包的网络控制系统的控制[J].控制工程,2008,15(S1):24-26. 被引量:3
  • 2王莉娜,赵先龙,阮锐,严晓明.压力传感器的自动标定技术[J].海洋测绘,2007,27(4):78-80. 被引量:5
  • 3吴立刚,王常虹,高会军.不确定线性2-D离散系统的鲁棒滑模控制[J].控制与决策,2007,22(2):148-154. 被引量:3
  • 4Kaczorek T Two-Dimensional Liner Systems [M]. Springer-Verlag, Berlin,1985.
  • 5Du C L, Xie L H, Zhang C S. H control and robust stabilization of two-dimensional systems in Roesser models[J]. Automatica, 2001, 37(2):205 -211.
  • 6Chen W S, Zhang Z Q. Nonliner adaptive learning control for unknown time-varying parameters and unknown time-varying delays[J]. Asian Journal o f Control, 2011, l 3 (6):903 -913.
  • 7Dai J T, Guo Z Z, Wang S L. Robust control for a class of 2-D nonlinear discrete stochastic systems[J]. Circuits, Systems and Signal Processing, 2013, 32(5):2297-2316.
  • 8Feng Z Y, Xu L, Wu M, et al. Delay-dependent robust stability and stabilization of uncertain two-dimensional discrete systems with time-varying delays[J].IET Control Theory Applications, 2010, 4(10):1959-1971.
  • 9Dhawan A, Kar H. An LMI approach to robust optimal guaranteed cost control of 2-D discrete systems described by the Roesser model[J]. Signal Processing, 2010, 90 (9) :2648-2654.
  • 10Lu W S. On a Lyapunov approach to stability analysis of 2-D filters[J] IEEE Transactions on Circuits and Systems, 1994, 41 (10):665-669.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部