期刊文献+

求解动态背包问题的改进原对偶遗传算法

A Novel Primal-Dual Genetic Algorithm for Dynamic Knapsack Problems
下载PDF
导出
摘要 动态背包问题是一类常见的工程设计问题,同时也是动态进化算法研究领域的难点之一。将贪婪近似法与双概率原对偶映射思想相结合,提出一种求解动态背包问题的改进双概率原对偶遗传算法。一方面,针对传统遗传算法求解动态问题时存在多样性缺失的缺陷,从保持等位基因多样性角度出发,引入基于基因位值的双概率对偶映射,该映射通过弱势基因位值的概念,在迭代过程中根据该数目对两个对偶概率进行适应性调整,使种群具有较理想的多样性;另一方面,通过当前环境反馈的启发式信息使种群较快地搜索到"可行优秀"区域,使得算法更快地追踪最优点的变化轨迹。仿真结果表明,采用该贪婪法后的原对偶遗传算法在动态背包问题的求解中具有较好的性能。 Dynamic knapsack problem is a familiar engineering design optimization problem,which is also a challenge in the field of investigating evolutionary algorithms for dynamic optimization problems.An improved double-probability primal-dual genetic algorithm is proposed,which integrates the greedy approximation method and double-probability primal-dualism scheme for solving dynamic knapsack problem.Firstly,for the sake of maintaining diversity of allies,the allele-based double-probability primal-dual mapping operator is introduced,which uses the notion of inferior-allele to adaptively adjust the two dual probabilities,and hence preventing diversity loss of classical genetic algorithm when dealing with dynamic optimization problems.Secondly,it is hoped that the heuristic information could enhance population searching for the'feasible and fitter'regions,and help the algorithm tracking the moving optimum as soon as possible.The recommended algorithm has been applied to the dynamic 0-1 knapsack problem with promising results and demonstrated the effectiveness of the proposed algorithm.
出处 《控制工程》 CSCD 北大核心 2010年第S2期124-127,共4页 Control Engineering of China
关键词 动态背包问题 双概率原对偶映射 贪婪近似法 遗传算法 dynamic knapsack problem double-probability primal-dual mapping greedy approximation method genetic algorithm
  • 相关文献

参考文献10

  • 1刘黎黎,汪定伟.基于置换的对偶遗传算法及其在动态排序优化问题中的应用[J].系统工程理论与实践,2008,28(11):129-134. 被引量:1
  • 2王洪峰,汪定伟,刘黎黎.求解动态优化问题的改进原对偶遗传算法[J].东北大学学报(自然科学版),2007,28(5):639-642. 被引量:5
  • 3Ting Kuo,Shu-Yuen Hwang.Using Disruptive Selection to Maintain Diversity in Genetic Algorithms[J]. Applied Intelligence . 1997 (3)
  • 4Kushida T.An empirical study of the characteristics of Internet communication. Computer Communications . 1999
  • 5Loulou R,Michaelides E.New Greedy like Heuristics for the Multidimensional 0-1 Knapsack Problem. Operations Research . 1979
  • 6Gordon V S,Whitley D.Serial and parallel genetic algorithms as function optimizers. Proceedings of the 5th International Conference on Genetic Algorithms . 1993
  • 7Zapata F.Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides. . 2002
  • 8S. Yang."Non-Stationary Problem Optimization Using the Primal-Dual Genetic Algorithm,". Proc. the 2003 IEEE Congress On Evolutionary Computation (CEC‘ 2003) . 2003
  • 9HG Cobb.An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environment. . 1990
  • 10Ting C K,,Li S T,Lee C N.TGA: a new integrated approach to evolutionary algorithms. IEEE Congress on Evolutionary Computation . 2001

二级参考文献25

  • 1王冰.动态单机调度的一种滚动时域策略及全局性能分析[J].系统工程理论与实践,2004,24(9):65-71. 被引量:4
  • 2Goldberg D E,Smith R E. Nonstationary function optimization using genetic algorithms with dominance and diploidy[C]//Proc of the 2nd Int Conf on Genetic Algorithms, 1987:59- 68.
  • 3Branke J, Kaubler T. A multi-population approach to dynamic optimization problems[ C]//In Adaptive Computing in Design and Manufacturing,2000: 1497 - 1513.
  • 4Collard P, Escazut C. An evolutionary approach for time dependant optimization[J]. International Journal on Artificial Intelligence Tools, 1997, 6(4) :665 - 695.
  • 5Yang S. Non-stationary problem optimization using the primal-dual genetic algorithm [C]//Proc of the IEEE Congress on Evolutionary Computation, Chicago, IEEE Service Center, 2003: 2246- 2253.
  • 6Wang H, Wang D. An improved primal-dual genetic algorithm for optimization in dynamic environments[ C]//13th International Conference on Neural Information Processing, Part Ⅲ, 2006:836 - 844.
  • 7Vinicius A. Tabu search for total tardiness minimization in flowshop scheduling problems[J]. Computers & Operations Research, 1999,26(4) :219 - 235.
  • 8Swaminathan R. Impact of permutation enforcement when minimizing total weighted tardiness in dynamic flowshops with uncertain processing times[J]. Computers & Operations Besearch,2007,34(4):3055- 3068.
  • 9Beasley J E. OR-Library, Collection of test datasets 1990. http://mscmga. ms. ic. ac. uk/jeb/pub/wt40.txt, wt.50. txt. wt100. txt [accessed 31 March, 2007].
  • 10Reeves C. A genetic algorithm for flowshop sequencing[J]. Computers and Operations Research, 1995, 22(4):5- 13.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部