期刊文献+

双层多目标遗传算法及应用 被引量:2

Two-layer Multi-objective Genetic Algorithm and Its Application
下载PDF
导出
摘要 为解决工程应用中的多目标优化问题,提出一种双层多目标遗传算法(two-layer multi-objective genetic algorithm,TLMOGA)。该算法根据个体间的支配关系将种群分成2层,并分别采用快速k最邻近算法和净强度函数法为这2层中的个体分配适应度。在此基础上,设计相应的个体排序和种群修剪策略,并确定了算法的整体流程。通过与传统多目标遗传算法进行比较,证明TLMOGA能够很好地保持解的收敛性和分布性,同时也具有较高的运算效率。最后,以ALSTOM气化炉基准控制器的参数优化整定为工程应用实例,进一步验证TLMOGA的有效性。仿真试验的结果表明,经优化后的控制系统,控制品质有了显著提高,达到了ALSTOM气化炉基准测试的要求。 In order to solve the multi-objective optimization problems in engineering application,a type of two-layer multi-objective genetic algorithm(TLMOGA) was proposed.The algorithm divided the population into two layers according to the dominance relationship,and the individuals in these two layers were assigned fitness by using fast k-nearest-neighbor algorithm and net strength function respectively.On this basis,relevant individual ranking and population pruning strategy were designed,and then the overall process of the algorithm was determined.Through comparing with traditional multi-objective genetic algorithms,it is proved that TLMOGA can well maintain the convergence and distribution of the solutions and also has relatively high computing efficiency.In the end,taking parameter optimization for the baseline controller of ALSTOM gasifier as an engineering application example,the effectiveness of TLMOGA was further verified.The simulation test results show that the optimized control system demonstrates significantly better control performance,which meets the requirements of ALSTOM gasifier benchmark tests.
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第S1期117-123,共7页 Proceedings of the CSEE
基金 国家高技术研究发展计划项目(863计划)(2006AA05A107 2009AA04Z158)~~
关键词 多目标遗传算法 快速k最邻近算法 净强度函数 ALSTOM气化炉 参数优化整定 multi-objective genetic algorithm fast k-nearest-neighbor algorithm net strength function ALSTOM gasifier parameter optimization
  • 相关文献

参考文献17

  • 1赵亮,雎刚,吕剑虹.一种改进的遗传多目标优化算法及其应用[J].中国电机工程学报,2008,28(2):96-102. 被引量:45
  • 2Kukkonen S,Deb K.Improved pruning of non-dominated solutionsbased on crowding distance for bi-objective optimization problems. IEEE Congress on Evolutionary Computation . 2006
  • 3Pena S I V,Rionda S B,Aguirre A H.Improved MaxMin selectionfor well spread pareto fronts. Technical Communication(CC/CIMAT) . 2007
  • 4Al Seyab R K,Cao Y.Nonlinear model predictive control for theALSTOM gasifier. Journal of Process Control . 2006
  • 5Zitzler E,Thiele L.Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation . 1999
  • 6Zitzler E,Laumanns M,Thiele L.SPEA2:Improving the Strength Pareto Evolutionary Algorithm for Multiobjeetive Optimization. Proceedings of Evolutionary Methods for Design, Optimization and Control . 2002
  • 7Deb K,Agrawal S,Pratap A,et al.A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation . 2002
  • 8Mikkel T Jensen.Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other algorithms. IEEE Transactions on Evolutionary Computation . 2003
  • 9DIXON R,PIKE A W,DONNE M S.The Alstom BenchmarkChallenge on Gasifier Control. Proc.Instn.Mech.Engrs,Part I,Journal of Systems and Control Engineering . 2000
  • 10Dixon R,Pike A W.Introduction to the 2nd ALSTOMbenchmark challenge on gasifier control. Proceedingsof Control 2004 . 2004

二级参考文献18

  • 1杨莉,高晓光,符小卫.优化设计中的多目标进化算法[J].计算机工程与应用,2005,41(6):33-36. 被引量:7
  • 2张兴华,朱筱蓉,林锦国.基于自适应遗传算法的多目标PID优化设计[J].系统工程与电子技术,2006,28(5):744-746. 被引量:8
  • 3玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 4Lucas A W, Michelle D M, Jason P P, et al. Parallel genetic algorithm for search and constrained multi-objective optimization[C]. Parallel and Distributed Processing Symposium, Santa Fe, New Mexico, USA, 2003.
  • 5Tan K C, Lee T H, Yang Y J, et al. A cooperative coevolutionary algorithm for multiobjective optimization[C]. IEEE International Conference on Systems, Man and Cybernetics, Holland, 2004, 1926-1931.
  • 6Nateri K, Madavan. Multiobjective optimization using a pareto differential evolution approach[C]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, USA, 2002, 1145-1150.
  • 7Parsopoulos K E, Tasoulis D K, Pavlidis N G, et al. Vector evaluated differential evolution for multiobjective optimization[C]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2004), Portland, USA, 2004, 204-211.
  • 8Oltean M, Grosan C, Abraham A, et al. Multiobjective optimization using adaptive pareto archived evolution strategy[C]. Proceedings of the 5th International Conference on Intelligent Systems Design and Applications, Wroclaw, Poland, 2005, 558-563.
  • 9De T F, Ortega J, Fernandez J, et al. A parallel genetic algorithm for multiobjective optimization[C]. Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-Based, Canary Islands, Spain, 2002, 384-391.
  • 10Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248.

共引文献44

同被引文献27

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部