期刊文献+

利用方向特性实现非下采样Contourlet变换阈值去噪 被引量:6

Image denoising using the directional property in the NSCT domain
下载PDF
导出
摘要 系数阈值是流行的去噪方法,其中阈值方式与大小的选择是一个重要的技术问题.依据非下采样Contourlet分解系数尺度内与尺度间的相关性,考虑到相同尺度内不同方向上系数分布的聚集性依赖图像自身发生变化,提出一种利用方向特性实现非下采样Contourlet变换阈值去噪策略.对于被加性高斯白噪声污染的图像,实验中将利用方向特性实现非下采样Contourlet变换阈值去噪策略方法与小波阈值去噪、Contourlet变换去噪方法和非下采样Contourlet变换去噪方法进行了比较,结果表明利用方向特性实现非下采样Contourlet变换阈值去噪策略的峰值信噪比结果相比这些方法平均高出0.5-3.3 dB,在边缘特征方面保持了良好的视觉效果. As the main prevailing denoising method,how the threshold function works and what the threshold value is are of the greatest importance.According to the interscale and intrascale dependencies of the coefficients in the non-subsampled Contourlet transform domain,and considering the change of coefficient's aggregation with different directional subbands in the same scale,a novel non-subsampled Contourlet transform denoising scheme using the directional property(ADNSCT) is proposed.This scheme can lead to enhanced estimation results for images that are corrupted with additive Gaussian noise over a wide range of noise variance.To evaluate the performance of the proposed algorithms,simulation results are compared with those by the algorithms,such as wavelet threshold,Contourlet transform threshold and non-subsampled Contourlet transform threshold for image denoising.The simulation results indicate that the proposed method outperforms the others 0.5~3.3 dB in the PSNR,and keep a better visual result in edges information reservation as well.
作者 贾建 焦李成
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第2期269-273,共5页 Journal of Xidian University
基金 国家自然科学基金资助(60472084,60703117)
关键词 阈值函数 小波变换 非下采样CONTOURLET变换 尺度相关 去噪 threshhold function wavelet transform non-subsampled Contourlet transform scale dependency denoising
  • 相关文献

参考文献11

  • 1孙强,焦李成,侯彪.基于子波域自适应融合HMTseg算法的遥感图像分割[J].西安电子科技大学学报,2007,34(6):853-858. 被引量:8
  • 2Donoho D L. De-noising by Soft-thresholding[J]. IEEE Trans on Inform Theory, 1995, 41(3): 613-627.
  • 3Do M N, Vetterli M. The Finite Ridgelet Transform for Image Representation[J]. IEEE Trans on Image Processing, 2002, 1(12): 16-28.
  • 4Starck J L, Candes E J, Donoho D L. The Curvelet Transform for Image De-noising[J]. IEEE Trans on Image Processing, 2002, 6(11): 670-684.
  • 5Do M N, Vetterli M. Contourlets: a Directional Multiresolution Image Representation [C]//IEEE International Conference on Image Processing. Rochester: IEEE, 2002: 357-360.
  • 6Do M N, Vetterli M. The Contourlet Transform: an Efficient Directional Multiresolution Image Representation[J]. IEEE Trans on Image Processing, 2005, 14(12): 2091-2106.
  • 7da Cunha A L, Zhou J, Do M N. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications[J]. IEEE Trans on Image Processing, 2006, 15(10): 3089-3101.
  • 8戴维,于盛林,孙栓.基于Contourlet变换自适应阈值的图像去噪算法[J].电子学报,2007,35(10):1939-1943. 被引量:52
  • 9Donoho D L. Wavelab850[CP/OL]. [2007-10-20]. http://www-stat. stanford. edu/-wavelab/Wavelab_850.
  • 10Do M N. Contourlet Toolbox[CP/OL]. [2007-10-10]. http://www. ifp. uiuc. edu/minhdo/software/.

二级参考文献21

  • 1焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 2Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41 (3) : 613 - 627.
  • 3Do MN. Directional multiresolution image representation[D]. PhD the2sis, EPFL, Lausanne, Switzerland, 2001.
  • 4Do M N, Vetterli M. Contourlets: a directional multi-resolution image representation [A]. IEEE International Conference on Image Processing[C]. Rochester, NY: IEEE, 2002. 357 - 360.
  • 5Mink N Do, Martin Vetterli. The finite Ridgelet transform for image representation[J]. IEEE Transactions on Image Processing, 2002,1 (12): 16 - 28.
  • 6J-L Starck, E J Candes, D L Donoho. The curvelet transform for image de-noising[J]. IEEE Transactions on Image Processing, 2002,6(11): 670 - 684.
  • 7Mirth N Do, M Vetterli. The Contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing to appear, 2005, 14 (12) : 2091 - 2106.
  • 8D H Hubel, T N Wiesel. Receptive fields, binocular interaction and functional architecture in the cat' s visual cortex[J]. Journal of Physiology 1962,160(1): 106 - 154.
  • 9M N Do, M Vetterli. Pyramidal directional filter banks and curvelet[A]. In Proceeding on Image Processing[C]. Thessa-loniki,Greece: IEEE,2001. 158 - 161.
  • 10P J Burt, E H Adelson. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Commune, 1983,4(31) : 532 - 540.

共引文献58

同被引文献72

  • 1同武勤,凌永顺,黄超超,杨华,樊祥.数学形态学和小波变换的红外图像处理方法[J].光学精密工程,2007,15(1):138-144. 被引量:45
  • 2TIAN F CH, XU X, XUE F, et al.. The size limitation on input image of 4f system in applications of optical image data compression[C]. Proceedings of International Conference on Sensing, Computing and Automation ( ICSCA 2006), Waterloo, 2006 2208-2211.
  • 3焦李成,侯彪,王爽,等.何分析理论与应用[M].西安:西安电子科技大学出版社,2008:280-284.
  • 4DO M N, VETTERLI M. Contourlets. In Beyond Wavelets[M]. New York: Academic Press, 2003. 125-134.
  • 5CUNHA A L, ZHOU J P,DO M D. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006,15(10) :3089-3101.
  • 6XU Y S, JOHN B, WEAVER. Wavelet transform domain filters: a spatially selective noise filtration technique[J]. IEEE Transactions on Image Processing, 1994,3(6) :747-758.
  • 7PIERRE, SOILLE. Morphological Image Analysis:Principles and Applications[M]. New York: Springer-Verlag and Tsinghua University Press, 2008:103-105.
  • 8WANG Z, BOVIK A C, SHEIKH H R. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transaction on Image Processing, 2004,13 (4): 600-612.
  • 9钱春强,王继成.四叉树理论在分形图像编码中的应用[J].计算机工程与应用,2007,43(23):61-63. 被引量:9
  • 10Kumar A. Computer-Vision-Based Fabric Defect Detection: A Survey [ J]. IEEE Trans on Industrial Electronics, 2008, 55(1): 348 -363.

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部