期刊文献+

社会协作的多智能体进化 被引量:7

Social cooperation based multi-agent evolutionary algorithm
下载PDF
导出
摘要 提出了一种新的求解函数优化的算法.借鉴社会协作机制,定义可信任度表示智能体的历史活动信息,控制智能体间的相互作用;引入"熟人关系网"模型构建和更新智能体的局部环境,利用多智能体之间的协作特性来加快算法收敛速度;并构造了非一致变异算子保证智能体种群的多样性.仿真实验结果表明,与性能优越的多智能体遗传算法相比,该算法能以更少的函数评价次数找到精度更高的最优解. A Social Cooperation based Multi-Agent Evolutionary Algorithm(SCMAEA) which integrates the social cooperation mechanism and multi-agent evolution for numerical optimization is proposed.Using the social cooperation mechanism,trust degree,which denotes the historical information for agents,is defined to control the interaction between agents.At the same time,the 'acquaintance net model' is imported to construct and update the local environment of the agent.It improves the convergence rate by the cooperation characteristic of agents.Furthermore,adopting the non-uniform mutation operation improves the searching for optimal solutions in the local region and assures the diversity of the solution.Simulation results show that compared with the multi-agent genetic algorithm,the social cooperation based multi-agent evolutionary algorithm can find the optima by a smaller number of function evaluations.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2009年第2期274-280,共7页 Journal of Xidian University
基金 国家"863"计划项目资助(2006AA01Z107) 博士点基金资助(20060701007)
关键词 函数优化 多智能体进化 社会协作机制 熟人关系网 收敛 function optimization multi-agent evolution social cooperation mechanism acquaintance net convergence
  • 相关文献

参考文献9

  • 1Vadde K K, Syrotiuk V R, Montgomery D C. Optimizing Protocol Interaction Using Response Surface Methodology [J]. IEEE Trans on Mobile Computing, 2006, 5(6) : 627-639.
  • 2汪西莉,刘芳,焦李成.基于概率模型的遗传算法[J].西安电子科技大学学报,2002,29(3):347-350. 被引量:4
  • 3杨淑媛,刘芳,焦李成.一种基于量子染色体的遗传算法[J].西安电子科技大学学报,2004,31(1):76-81. 被引量:45
  • 4Leung Yiuwing, Wang Yuping. An Orthogonal Genetic Algorithm with Quantization for Global Numerical Optimization [J]. IEEE Trans on Evolutionary Computation, 2001, 5(1): 41-53.
  • 5Kazarlis S A, Papadakis S E, Theocharis J B, et al. Micro Genetic Algorithms as Generalized Hill-climbing Operators for GA Optimization [J]. IEEE Trans on Evolutionary Computation, 2001, 5(3) : 204-217.
  • 6Zhong Weieai, Liu Jing, Xue Mingzhi, et al. A Multiagent Genetic Algorithm for Global Numerical Optimization [J]. IEEE Trans on Systems, Man and Cybernetics, 2004, 34(2): 1128-1141.
  • 7Liu Jiming, Han Jing, Tang Y Y. Multi-agent Oriented Constraint Satisfaction [J]. Artificial Intelligence, 2002, 136(1) : 101-144.
  • 8陈刚,陆汝钤.关系网模型——基于社会合作机制的多Agent协作组织方法[J].计算机研究与发展,2003,40(1):107-114. 被引量:44
  • 9江瑞,罗予频,胡东成,司徒国业.一种协调勘探和开采的遗传算法:收敛性及性能分析[J].计算机学报,2001,24(12):1233-1241. 被引量:22

二级参考文献30

  • 1Muldenbein H. Parallel Genetic Algorithms in Combinatorial Optimization[A]. Computer Science and Operation Research--New Developments[M]. New York: Pergamon Press, 1992. 441-453.
  • 2Grefenstette J J, Coped R, Rosmaita B, et al. Genetic Algorithms for the Traveling Salesman Problem[A]. Proceedings of the First International Conference on Genetic Algorithms and Their Applications[C]. NJ: Lawrence Earlbaum Associate, 1985. 160-168.
  • 3Kristinsson K, Dumont G A. System Identification and Control Using Genetic Algorithms[J]. IEEE Trans on Sys, Man and Cybernetic,1992, 22(5): 1033-1046.
  • 4Holland J H. Genetic Algorithms and Classifier Systems: Foundations and Their Applicaitons[A]. Proceedings of the Second International Conference on Genetic Algorithms[C]. Hillsdale: Lawrence Erlbaum Associates, 1987. 82-89.
  • 5Krishnakumar K, Goldberg D E. Control System Optimization Using Genetic Algorithms[J]. Journal of Guidance, Control and Dynamics, 1992, 15(3): 735-740.
  • 6Rudolph G. Convergence Analysis of Canonical Genetic Algorithms[J]. IEEE Trans on Neural Networks, 1994, 5(1): 96-101.
  • 7Stumpf J D, Feng X, Kelnhofer R W. An Enhanced Operator-oriented Genetic Search Algorithm[A]. The First IEEE Conference on Evolutionary Computation[C]. Orlando; IEEE Press, 1994. 235-238.
  • 8Hesser J, Manner R. Towards an Optimal Mutation Probability for Genetic Algorithms[A]. Proceedings of the First Conference on Parallel Problem Solving from Nature[C]. Dortmund: Springer, 1990. 23-32.
  • 9Srinivas M, Patnail L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[J]. IEEE Trans Syst, Man and Cybem, 1994, 24(4): 656-667.
  • 10Hey T. Quantum Computing: an Introduction[J]. Computing & Control Engineering Journal, 1999, 10(3) : 105-112.

共引文献111

同被引文献102

引证文献7

二级引证文献452

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部