期刊文献+

结合形态学理论与Hough变换的SAR图像线目标检测方法 被引量:1

A Linetype Target Detecting Method for SAR Images Based on the Combination of Morphology and Hough Transform
下载PDF
导出
摘要 针对典型线状军事目标,提出一种SAR图像的目标检测方法。该方法首先将分块阈值分割的思想应用于未经斑点噪声抑制的原始SAR图像,得到ROI(Region of Interest)图像;然后,利用区域的几何特征有效地剔除大量虚警,并采用形态学梯度算子提取目标的边缘信息,与传统的Canny边缘检测相比,边缘轮廓更加连贯;最后,利用Hough变换对梯度图像进行直线检测,得到机场跑道的边缘。该方法对原始SAR图像采用传统的图像处理技术进行目标检测,因此,比基于SAR图像统计特性的目标检测方法简单易行。对真实SAR图像的实验结果验证了该方法的有效性。 This paper proposes a target detecting method for typical linetype man-made targets in SAR images.First,the local threshold method is applied to the SAR image in which the intrinsic speckle noise has not been depressed,and the region of interest(ROI) is obtained.Secondly,the geometrical characteristics are utilized in order to reduce false alarms.Thirdly,the edge information of the target is extracted with the basic morphological gradient detector instead of the traditional Canny detector,which can get the edges with better consistency.Finally,the Hough transform is used to detect straight lines in edge images automatically.Owing to the traditional image processing techniques,this method can be realized more easily and provided with more robustness,comparing with other detection methods,such as those based on statistical models of SAR images.The experiments are carried out on real SAR images and the results demonstrate the validity of the proposed method.
出处 《遥测遥控》 2007年第6期64-67,共4页 Journal of Telemetry,Tracking and Command
关键词 合成孔径雷达 线目标检测 形态学滤波 HOUGH变换 SAR Linetype target detection Morphological filter Hough transform
  • 相关文献

参考文献1

二级参考文献14

  • 1舒士畏 郭华东 等.雷达图像的几何特点及计算机模拟.雷达图像分析及地质应用[M].北京:科学出版社,1991.11-20.
  • 2Walessa M, Datcu M. Model-Based Despeckling and Information Extraction from SAR Images [J]. IEEE Trans. on Geescience and Remote Sensing, 2000, 38(9):2258-2269.
  • 3Romberg J K, Choi H, Baraniuk R G. Bayesian Tree-Structured Image Modeling Using Wavelet-Domain Hidden Markov Models[J]. IEEE Trans. on Image Processing, 2001, 10(16): 1056- 1068.
  • 4Hong Sun, Henri Maitre, Bao Guan. Turbo Image Restoration[C].International Symposium on Signal Processing and Its Applications, Paris France, 2003.417 - 420.
  • 5Novak L M, Owirka G J, Netishen C M. Performance of a Highresolution Polarimetric SAR Automatic Target Recognition System [J].Lincoln Laboratory Jonmal, 1993, 6(1): 11-23.
  • 6Kaplan L M. Improved SAR Target Detection via Extended Fractsl[J]. IEEE Trans. on Aeropace and Electronic Systems, 2001,37(2): 436-451.
  • 7Kaplan L M, Jaykuo C C. Texture Ronghness Analysis and Synthesis via Extended Self-Similar (ESS) Model[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17: 1043- 1056.
  • 8Touzi R, A Lopes, P Bousquet. A Statistical and Geometrical Edge Detector for SAR Images [J]. IEEE Trans. on Geoscience and Remote Sensing. 1988, 26(6):764- 773.
  • 9Florence Tupin, Henri Maitre,Jean-Francois Mangin, et al. Detection of Linear Features in SAR Images: Application to Road Network Extraction[J]. IEEE Trans. on Geoscience and Remote Sensing,1998,36(2): 434 -453.
  • 10Copeland A C, Ravichandran G, Trivedi M M. Localized Radon Transform-Based Detection of Ship Wakes in SAR Imagery[J]. IEEE Trans. on Geoscience and Remote Sensing, 1995,33(1): 35-44.

共引文献4

同被引文献4

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部