期刊文献+

低密度奇偶校验码快速收敛译码算法研究

Research on a Fast Convergence Decoding Algorithm for LDPC Codes
下载PDF
导出
摘要 介绍低密度奇偶校验码(LDPC码)的构造方法和置信传播译码算法,引入基于校验节点的一种快速收敛译码算法——串行译码算法。从树的深度方面分析串行译码算法的消息收敛特性,证明该算法与置信传播译码算法相比具有较好的收敛特性,且降低了译码复杂度。在加性高斯白噪声(AWGN)环境下,采用BPSK调制方式分别对串行译码算法和置信传播算法进行了计算机仿真。结果表明,串行译码算法的译码性能具有明显的改善。该算法使硬件实现变得更容易,资源占有量会降低,这就为LDPC码的工程实现提供了一种可行的方案。 The construction methods of LDPC codes with its Belief Propagation(BP) decoding algorithm are briefly introduced.On this condition,a fast convergence decoding algorithm based on check nodes is introduced,which is called serial decoding algorithm.By analyzing the tree depth of the message convergence,it is proved that the convergence speed of this algorithm is better than the BP decoding algorithm and the complexity of this algorithm is reduced.Then,the BP decoding algorithm and the serial decoding algorithm are simulated respectively for BPSK signals in the AWGN channel.The results of the simulation show that the decoding performance can be improved by the serial decoding algorithm.The serial decoding algorithm is simple.Its hardware implementation is easier and it needs less resources.So the serial decoding algorithm is proved to be an effective method of Low Density Parity Check codes in the engineering implementation.
出处 《遥测遥控》 2007年第3期47-52,共6页 Journal of Telemetry,Tracking and Command
关键词 低密度奇偶校验码 置信传播译码算法 串行译码算法 消息收敛特性 LDPC codes BP algorithm Serial decoding algorithm Message convergence performance
  • 相关文献

参考文献7

  • 1曾蓉,梁钊.低密度校验(LDPC)码的构造及编码[J].重庆邮电学院学报(自然科学版),2005,17(3):316-319. 被引量:12
  • 2Tanner R M.A Recursive Approach to Low Complexity Codes. IEEE Transactions on Information Theory . 1981
  • 3Kschischang F R,Frans B J,Loeliger H.Factor Graphs and the Sum Product Algorithm. IEEE Transactions on Information Theory . 2001
  • 4David MacKay J C.Good Error Correction Codes Based on Very Sparse Matrices. IEEE Transactions on Information Theory . 1999
  • 5Richardson T,Urbanke R.The Capacity of Low Density Parity Check Codes under Message-passing Decoding. IEEE Transactions on Information Theory . 2000
  • 6Gallager R G.Low Density Parity Check Codes. IRE Transactions on Information Theory . 1962
  • 7Chung S Y,Forney G D Jr,Richardson T J,Uranke R.On the Design of Low-density Parity-check Codes within 0.0045dB of the Shannon Limit. IEEE Communications Letters . 2001

二级参考文献9

  • 1GALLAGER R G. Low density parity check codes [J].IRE Transactions on Information Theory,1962,8(3):208-220
  • 2GALLAGER R G. Low Density Parity Check Codes [M].Cambridge, Mass: MIT Press,1963.
  • 3MACKAY DJC. Good error correcting codes bases on very spare matrices [J].IEEE Trans on Information Theory,1999,45(2):399-431.
  • 4RICHARDSON T J,URBANKE R L.Efficient encoding of low density parity check codes[J]. IEEE Transactions on information theory,2001,47(2):641-644.
  • 5KOU Y,LIN S,FOSSORIER M P C.Low density parity check matrices based on finite geometries:A rediscovery and new results[J].IEEE Trans. Info. Theory, 2001,47(7):711-2736.
  • 6LIN S,COSTELLO D J.Error Control Coding: Fundamentals and Applications[M].Prentice Hall, Englewood Cliffs, New Jersey, 1983.
  • 7KASAMI T,LIN S,PETERSON W W.Polynomial codes[J]. IEEE Transactions on Information Theory, 1968,14:807-814.
  • 8WELDON E J,Euclidean geometry cyclic codes[J]. Proc. Symp. Combinatorial Math.,1967,(4):541-544.
  • 9ABHIRAM Prabhakar ,KRISHNA Narayanan.Pseudo-Random Construction of Low Density Parity Check Codes Using Linear Congruential Sequences[R]. Department of ee Texas A&M University February, 2002.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部