期刊文献+

Zero asymptotic Lipschitz distance and finite Gromov-Hausdorff distance

Zero asymptotic Lipschitz distance and finite Gromov-Hausdorff distance
原文传递
导出
摘要 We give an example which shows that the Burago’s bounded distance theorem does not hold in a non-intrinsic metric case. The argument is based on the classical answer to the densest circle packing problem in ?2. We give an example which shows that the Burago’s bounded distance theorem does not hold in a non-intrinsic metric case. The argument is based on the classical answer to the densest circle packing problem in R2.
出处 《Science China Mathematics》 SCIE 2007年第3期345-350,共6页 中国科学:数学(英文版)
基金 This work was partially supported by the Natural Science Foundation of Hunan Province(Grant No.06555009) Scientific Research Fund of Hunan Provincial Education Department(Grant No.00C194)
关键词 asymptotic Lipschitz distance Gromov-Hausdorff distance densest circle packing 51K05 05B40 asymptotic Lipschitz distance Gromov-Hausdorff distance densest circle packing.
  • 相关文献

参考文献7

  • 1Burago D.Periodic metrics[].Advances in Soviet Math.1992
  • 2Burago D.Periodic metrics[].Seminar on Dynamical Systems Progress in Nonlinear Differential Equations.1994
  • 3Burago D,Burago Y,Ivanov S.A Course in Metric Geometry[]..2001
  • 4Liu L.Volume growth of some uniformly contractible Riemannian manifolds[].Math Zeit.
  • 5Conway J H,Sloane N J A.Sphere Packings, Lattices and Groups[]..1988
  • 6Burago D,Ivanov S.On asymptotic volume of Finsler tori, minimal surfaces in normed spaces, and symplectic filling volume[].Ann of Math.2002
  • 7Gromov M.Metric Structures for Riemannian and Non-Riemannian Spaces[].Progr in Math.1999

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部