摘要
For a field $\mathbb{F}$ of characteristic zero and an additive subgroup G of $\mathbb{F}$ , a Lie algebra B(G) of the Block type is defined with the basis {L α,i , c | α ∈ G ?1 ≤ i ∈ ?} and the relations [L α,i , L β,j ] = ((i + 1)β ? (j + 1)α)L α+β,i+j + αδ α, ?β δ i+j,?2 c, [c, L α,i ] = 0. Given a total order ? on G compatible with its group structure, and any Λ ∈ B(G) 0 * , a Verma B(G)-module M(Λ, ?) is defined, and the irreducibility of M(Λ, ?) is completely determined. Furthermore, it is proved that an irreducible highest weight B(?)-module is quasifinite if and only if it is a proper quotient of a Verma module.
For a field F of characteristic zero and an additive subgroup G of F, a Lie algebra B(G) of the Block type is defined with the basis {Lα,i, c|α∈G, -1≤i∈Z} and the relations [Lα,i,Lβ,j] = ((i + 1)β- (j + 1)α)Lα+β,i+j +αδα,-βδi+j,-2c,[c, Lα,i] = 0. Given a total order (?) on G compatible with its group structure, and anyα∈B(G)0*, a Verma B(G)-module M(A, (?)) is defined, and the irreducibility of M(A,(?)) is completely determined. Furthermore, it is proved that an irreducible highest weight B(Z )-module is quasifinite if and only if it is a proper quotient of a Verma module.
基金
This work was supported by the National Natural Science Foundation of China (Grant No. 10471096) and One Hundred Talents Program from University of Science and Technology of China