期刊文献+

Highest weight representations of a Lie algebra of Block type 被引量:4

Highest weight representations of a Lie algebra of Block type
原文传递
导出
摘要 For a field $\mathbb{F}$ of characteristic zero and an additive subgroup G of $\mathbb{F}$ , a Lie algebra B(G) of the Block type is defined with the basis {L α,i , c | α ∈ G ?1 ≤ i ∈ ?} and the relations [L α,i , L β,j ] = ((i + 1)β ? (j + 1)α)L α+β,i+j + αδ α, ?β δ i+j,?2 c, [c, L α,i ] = 0. Given a total order ? on G compatible with its group structure, and any Λ ∈ B(G) 0 * , a Verma B(G)-module M(Λ, ?) is defined, and the irreducibility of M(Λ, ?) is completely determined. Furthermore, it is proved that an irreducible highest weight B(?)-module is quasifinite if and only if it is a proper quotient of a Verma module. For a field F of characteristic zero and an additive subgroup G of F, a Lie algebra B(G) of the Block type is defined with the basis {Lα,i, c|α∈G, -1≤i∈Z} and the relations [Lα,i,Lβ,j] = ((i + 1)β- (j + 1)α)Lα+β,i+j +αδα,-βδi+j,-2c,[c, Lα,i] = 0. Given a total order (?) on G compatible with its group structure, and anyα∈B(G)0*, a Verma B(G)-module M(A, (?)) is defined, and the irreducibility of M(A,(?)) is completely determined. Furthermore, it is proved that an irreducible highest weight B(Z )-module is quasifinite if and only if it is a proper quotient of a Verma module.
出处 《Science China Mathematics》 SCIE 2007年第4期549-560,共12页 中国科学:数学(英文版)
基金 This work was supported by the National Natural Science Foundation of China (Grant No. 10471096) and One Hundred Talents Program from University of Science and Technology of China
关键词 Verma modules Lie algebras of Block type IRREDUCIBILITY 17B10 17B65 17B68 Verma modules Lie algebras of Block type irreducibility
  • 相关文献

参考文献4

  • 1Linsheng Zhu,Daoji Meng.Structure of Degenerate Block Algebras[J].Algebra Colloquium.2003(1)
  • 2Victor G. Kac,José I. Liberati.Unitary Quasi-finite Representations of W∞[J].Letters in Mathematical Physics.2000(1)
  • 3Xiaoping Xu.Generalizations of the Block algebras[J].manuscripta mathematica.1999(4)
  • 4Victor Kac,Andrey Radul.Quasifinite highest weight modules over the Lie algebra of differential operators on the circle[J].Communications in Mathematical Physics.1993(3)

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部