期刊文献+

On the local wellposedness of 3-D water wave problem with vorticity 被引量:2

On the local wellposedness of 3-D water wave problem with vorticity
原文传递
导出
摘要 In this article, we first present an equivalent formulation of the free boundary problem to 3-D incompressible Euler equations, then we announce our local wellposedness result concerning the free boundary problem in Sobolev space provided that there is no self-intersection point on the initial surface and under the stability assumption that $\frac{{\partial p}}{{\partial n}}(\xi )\left| {_{t = 0} } \right. \leqslant - 2c_0 < 0$ being restricted to the initial surface. In this article,we first present an equivalent formulation of the free boundary problem to 3-D incompressible Euler equations,then we announce our local wellposedness result concerning the free boundary problem in Sobolev space provided that there is no self-intersection point on the initial surface and under the stability assumption that(?)p/(?)n(ξ)|t=0≤-2c<sub>0</sub>&lt;0 withξbeing restricted to the initial surface.
出处 《Science China Mathematics》 SCIE 2007年第8期1065-1077,共13页 中国科学:数学(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.10525101,10421101 and 10601002) the innovation grant from Chinese Academy of Sciences
关键词 WATER-WAVES free boundary incompressible Euler equations primary 35Q35 76B03 secondary 35J67 35L80 water-waves free boundary incompressible Euler equations
  • 相关文献

参考文献4

  • 1Sijue Wu.Well-posedness in Sobolev spaces of the full water wave problem in 2-D[J].Inventiones mathematicae.1997(1)
  • 2Gilbert J,Murray M.Clifford Algebras and Dirac Operators in Harmonic Analysis[]..1991
  • 3Zhang P,Zhang Z F.On the free boundary problem of 3-D incompressible Euler equations[].Preprints.2006
  • 4Shatah J,Zeng C C.Geometry and a priori estimates for free boundary problems of the Euler’s equation[].Preprints.2006

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部