期刊文献+

A lower bound on the total signed domination numbers of graphs 被引量:8

A lower bound on the total signed domination numbers of graphs
原文传递
导出
摘要 Let G be a finite connected simple graph with a vertex set V (G) and an edge set E(G). A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1}. The weight of f is w(f) = Σ x∈V(G)∪E(G) f(x). For an element x ∈ V (G) ∪ E(G), we define $f[x] = \sum\nolimits_{y \in N_T [x]} {f(y)} $ . A total signed domination function of G is a function f : V (G) ∪ E(G) → {?1, 1} such that f[x] ? 1 for all x ∈ V (G) ∪ E(G). The total signed domination number γ s * (G) of G is the minimum weight of a total signed domination function on G.In this paper, we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values of γ s * (G) when G is C n and P n . Let G be a finite connected simple graph with a vertex set V(G)and an edge set E(G). A total signed domination function of G is a function f:V(G)∪E(G)→{-1,1}.The weight of f is W(f)=∑<sub>x∈V</sub>(G)∪E(G))f(X).For an element x∈V(G)∪E(G),we define f[x]=∑<sub>y∈NT[x]</sub>f(y).A total signed domination function of G is a function f:V(G)∪E(G)→{-1,1} such that f[x]≥1 for all x∈V(G)∪E(G).The total signed domination numberγ<sub>s</sub><sup>*</sup>(G)of G is the minimum weight of a total signed domination function on G. In this paper,we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values ofγ<sub>s</sub><sup>*</sup>(G)when G is C<sub>n</sub> and P<sub>n</sub>.
出处 《Science China Mathematics》 SCIE 2007年第8期1157-1162,共6页 中国科学:数学(英文版)
基金 the National Natural Science Foundation of China(Grant No.10471311)
关键词 total signed domination function total signed domination number 26A33 total signed domination function total signed domination number
  • 相关文献

参考文献3

  • 1Haynes T W,Hedetniemi S T,Slater P J.Fundamentals of Domination in Graphs[]..1998
  • 2Haynes T W,Hedetniemi S T,Slater P J.Domination in Graphs Advanced Topics[]..1998
  • 3Bondy J A,Murty U S R.Graph Theory with Applications[]..1976

同被引文献19

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部