期刊文献+

Diophantine vectors in analytic submanifolds of Euclidean spaces

Diophantine vectors in analytic submanifolds of Euclidean spaces
原文传递
导出
摘要 Let $\mathcal{M}$ be an m-dimensional analytic manifold in ? n . In this paper, we prove that almost all vectors in $\mathcal{M}$ (in the sense of Lebesgue measure) are Diophantine if there exists one Diophantine vector in $\mathcal{M}$ . Let M be an m-dimensional analytic manifold in R^n.In this paper,we prove that almost all vectors in M (in the sense of Lebesgue measure) are Diophantine if there exists one Diophantine vector in M.
出处 《Science China Mathematics》 SCIE 2007年第9期1334-1338,共5页 中国科学:数学(英文版)
基金 This work was partially supported by the National Natural Science Foundation of China (Grant No.10531050) the National Basic Research Program of China (Grant No.2007CB814800)
关键词 diophantine vector analytic submanifold 32C05 diophantine vector analytic submanifold
  • 相关文献

参考文献14

  • 1Junxiang Xu,Jiangong You,Qingjiu Qiu.Invariant tori for nearly integrable Hamiltonian systems with degeneracy[J]. Mathematische Zeitschrift . 1997 (3)
  • 2M. B. Sevryuk.Kam-stable Hamiltonians[J]. Journal of Dynamical and Control Systems . 1995 (3)
  • 3A. S. Pyartli.Diophantine approximations on submanifolds of Euclidean space[J]. Functional Analysis and Its Applications . 1969 (4)
  • 4Wolfgang M. Schmidt.Metrische S?tze über simultane Approximation abh?ngiger Gr??en[J]. Monatshefte für Mathematik . 1964 (2)
  • 5Schmidt W M.Metrische s(?)tzeüber simultane approximation abh(?)ngiger grossen. Monatshefte fur Mathematik . 1964
  • 6Rüssmann H.Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regular Chaotic Dyn . 2001
  • 7Rüssmann H.On twist Hamiltonian Talk on the Colloque International:Mécanique Céleste et Systémes Hamiltoniens,Marseille. . 1990
  • 8Starkov A N.Dynamical Systems on Homogeneous Spaces. Trausl Math Monograghs . 2000
  • 9Pyartli A S.Diophantine approximation on submanifolds of Euclidean space. Functional Analysis and Its Applications . 1969
  • 10Bernik V I,Dodson M M.Metric Diophantine Approximation on Manifolds. Cambridge Tracts in Math . 1999

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部