期刊文献+

热管翘片的优化设计

Optimized Design of Heat-pipe Fin
原文传递
导出
摘要 理论分析提出翘片传热效率的概念,推导翘片厚度、翘片高度和翘片的间距或者系数x决定了传热效率,也就是强化传热的效果。在翘片材料为黄铜、强制对流条件下,分析了优化翘片各参数,提出临界翘片厚度的概念,给出临界翘片厚度和翘片高度的关系曲线。 From the theory analysis,it is concluded that fin thickness,fin height and fin space between or parameter x decide the diathermanous effect value,and the concept of diathermanous effect is put forward.Under the condition of brass radiator and compelling convection,the concept of critical fin thickness and fin is put forward,optimized fin parameters and the relationship between critical fin thickness and fin height were concluded.
出处 《航空精密制造技术》 2007年第4期57-60,共4页 Aviation Precision Manufacturing Technology
关键词 热管翘片 翘片传热效率 临界翘片厚度 heat-pipe fin fin diathermanous efficiency critical fin thickness
  • 相关文献

参考文献6

  • 1杨永平,魏庆朝,周顺华,张鲁新.热管技术及其在多年冻土工程中的应用研究[J].岩土工程学报,2005,27(6):698-706. 被引量:31
  • 2沈胜强,李维仲.直肋片最佳肋片厚度的理论关系式[J].节能,2000,19(3):6-8. 被引量:10
  • 3erome Totli,Rohcrt DcHoff,Kcviii Grubh.Heat Pipes:TheSilent Way to Manage Desktop Thermal Prohienis. 1998InterSociery Conference on Thermal Phenomena .
  • 4Hong Xie,Andre Ali,Raltesh Bhatia.The use of heat pipesin personal computers. 1998 InterSociety Conference onTherind Phenomena .
  • 5Jie Wei Kunio Hijikata and Takayoshi Inoue.Fin efficiency enhancement using a gravity assisted planar heat pipe. International Journal of Heat and Mass Transfer . 1997
  • 6Z. Zhao and C. T. Avedisian.Enhancing forced air convection heat transfer from an array of parallel plate fins using a heat pipe. International Journal of Heat and Mass Transfer . 1997

二级参考文献16

  • 1瓦西里耶夫ΛΛ 格拉科维奇ΛП 科瓦利科夫ВП 童伯良 译.用倾斜热管冻结土的效果[J].地基基础与力学,1983,:20-21.
  • 2Edward Yarmak Jr, Long, Erwin L.Recent developments in thermosyphon technology[A]. Cold Regions Engineering Cold Regions impacts on Transportation and Infrastructure: Proceedings of the Eleventy International Conference[C]. May, 2002.856-868.
  • 3Haynes F D, Zarling J P. Thermosyphons and foundation design in cold regions[J]. Cold Regions Science and Technology, 1988,15(3):251-259.
  • 4Haynes F D, Zarling J P, Gooch G E. Performance of a thermosyphon with a 37-meter-long horizontal evaporator[J]. Cold Regions Science and Technology, 1992, 20(1) 261-269.
  • 5Zarling J P, Braley W A. Geotechnical thermal analysis[J]. Embankment Design and Construction in Cold Regions. Technical Council on Cold Regions Engineering, ASCE, New York, NY, 1988:35-92.
  • 6Fan Changfu, Wu Cunwu, Qiao Qifang, Niu Lijun, Liu Baiqing. Application of thermosypnons to stabilize foundations of electric power equipment in cold regions[J]. American society of mechanical engineerings, 95-WA/HT-45, 1995:108-121.
  • 7Lock H G S, Chong K, Dyckerhoff A, Huyer J, et al.On the design of wind-augmented thermosyphons[J].Cold Regions Science and Technology. 1989, 16(4): 11-23.
  • 8Randy Clarksean. Experimental analysis of natural convection within a thermosyphon[J]. Experimental Thermal and Fluid Science, 1993, 7(2): 133-141.
  • 9ángela Jiménez Casas, Alfonso Matías Lozano Ovejero. Numerical analysis of a closed-loop thermosyphon including the soret effect[J]. Applied Mathematics and Computation, 2001,12(4): 289-318.
  • 10Heuer C E, Long E L, Zarling J P. Passive techniques for ground temperature control[J]. Thermal Considerations in Frozen Ground Engineering, Monograph Series by ASCE Technical Council on Cold Regions Engineering, New York, 1985:72-154.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部