期刊文献+

AUCBoost算法处理不平衡分类问题 被引量:1

AUC-Based boosting method for the classification of rare classes
原文传递
导出
摘要 在现实生活中很多应用都包含了对不平衡数据集的分类.由于不平衡数据集中多数类与稀有类的数量相差较大,所以大多数分类算法都不能够很好地对稀有类样本进行分类,而通常稀有类才是我们首要关心的,这就给不平衡数据的分类提出了挑战,为了更好地处理不平衡数据集的分类问题,本文提出了一种以基分类器的ROC曲线下面积(AUC面积)为分类权重的AUCBoost分类算法. Classifying to unbalance data sets has many applications in our life.The number of rare class is much less than the other,so most classiers could not do well when they meet rare class.But usually the recognition of the rare class is most important,so it's really a challenge for classification problem of unbalance data sets.To solve the problem better,the paper proposes a novel AUC-Based(AUC: Area Under ROC Curve) Boosting method.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第S2期313-318,共6页 Journal of Yunnan University(Natural Sciences Edition)
关键词 不平衡数据集 稀有类 组合方法 提升算法 unbalance data set rare classes committee learning Boosting
  • 相关文献

参考文献8

  • 1WEISS G M.Mining with rarity:A unifying framework. Sigkdd Explorations . 2004
  • 2FREUND Y,SCHAPIRE R E.A decision-theoretic gener-alization of on-line learning and anapplication to boosting. Journal of Computer and System Sciences . 1997
  • 3CHAWLA N V,JAPKOWICZ N,KOLCZ A.Editorial:Spe-cial issue on learning from imbalanced data sets. Sigkdd Explorations . 2004
  • 4JOSHI M V,AGARWAL R C,KUMAR V.Predicting rareclasses;Can boosting make any weak learner strong?. Proc.Of the 8th Intl.Conf on Knowledge Discoverry andData Mining . 2002
  • 5FAN W,STOLFO S J,ZHANG J,CHAN P K.AdaCost:misclassification cost-sensitive boosting. proceed-ings of the Sixteenth International Conference on MachineLearning . 1999
  • 6JOSHI M V,KUMAR V,AGARWAL R C.Evaluatingboosting algorithms to classify rare cases:comparison andimprovements. First IEEE International Conferenceon Data Mining . 2001
  • 7QUINLAN,R.C4.5:Programs for MachineLearning. . 1993
  • 8Bradley A P.The Use of the Area under the Roc Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition . 1997

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部