期刊文献+

块θ方法关于一类广义延迟微分方程的渐近稳定性

Numerical Stability of Blockθ-methods for a Type of General Delay Differential-algebraic Equations
下载PDF
导出
摘要 基于延迟微分代数方程的稳定性理论,讨论了一类广义延迟微分代数方程的渐近稳定性,并讨论了块θ方法应用于其上的渐近稳定性. This paper deals with the asymptotic behavior of blockθ-methods for a type of general delay differential-algebraic equations.It is shown that the methods preserve the asymptotic stability of the equations under certain conditions if applied to the equations.
作者 汪玉霞
出处 《应用数学》 CSCD 北大核心 2007年第S1期159-162,共4页 Mathematica Applicata
关键词 延迟微分代数方程 块θ方法 稳定性 Delay differential-algebraic equations Blockθ-methods Stability
  • 相关文献

参考文献7

  • 1徐阳,赵景军,刘明珠.线性延迟微分代数方程块隐式θ-方法的渐近稳定性[J].数值计算与计算机应用,2004,25(2):133-137. 被引量:4
  • 2项家祥.一类特殊的块方法[J].上海师范大学学报(自然科学版),1994,23(3):21-28. 被引量:2
  • 3Zhu W J,Petzold L R.Asymptotic stability of linear delay differential-algebraic equations and numerical methods. Applied Numerical Mathematics . 1997
  • 4Shampine L F,Watts H A.Block implicit one-step methods. Mathematics of Computation . 1969
  • 5Shampine L F,Watts H A.Block implicit one-step methods. Mathematics of Computation . 1969
  • 6Zhou Bing.A-stable and L-stable block implicit one-step methods. Journal of Computational Mathematics . 1985
  • 7Liu Lianhua.The stability of the blockθ-methods. IMA.Numer.Anal . 1993

二级参考文献10

  • 1U. Ascher, L.R. Petzold, The numerical solution of delay-differential-algebraic equations of retarded and neutral type, SIAM J. Numerical Analysis, 32(1995) 1635-1657.
  • 2W.J. Zhu, L.R. Petzold, Asymptotic stability of linear delay differential-algebraic equations and numerical methods, Applied Numerical Mathematics, 24(1997) 247-264.
  • 3G.F. Zhang, Stability of implicit one-block methods for delay differential equations, Appl. Numer. Math., 36(2001) 275-279.
  • 4L.H. Lu, The stability of the block θ-methods, IMA J. Numerical Analysis, 13(1993) 101-114.
  • 5U. Ascher , L.R. Petzold, Stability of computational methods for constrained dynamics systems, SIAM J. Sci. Comput., 14(1993) 95-120.
  • 6T.Koto, NP-stability of Runge-Kutta methods based on classical quadrature, BIT, 37(1997) 870-884.
  • 7A.Iserles, On the generalized pantograph functional-differential equation, European J. Applied Mathematics, 4(1993) 1-38.
  • 8U.Ascher, H.Chin, S.Reich, Stability of DAE and invariant manifolds, Numerische Mathematik,67(1994) 131-149.
  • 9C. Lubich, On projected Runge-Kutta methods for differential-algebraic equations, BIT, 31(1991) 545-550.
  • 10Kevin Burrage. A special family of Runge-Kutta methods for solving stiff differential equations[J] 1978,BIT(1):22~41

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部