期刊文献+

基于最小二乘支持向量机的红外小目标检测 被引量:2

The Detection of Small and Weak Infrared Targets Based on Least Squres Support Vector Machine
下载PDF
导出
摘要 红外图像中的小目标由于其特殊性,难于由现有的图像处理知识来识别.支持向量机由于很难实现于像素级的运算而难于推广.本文采用最小二乘支持向量机,对已有图像数据进行分类训练,然后由训练好的向量机来检测红外图像中的小目标.实验证明该方法比支持向量机有明显的速度优势,具有很好的鲁棒性,对于复杂背景下的红外小目标提取十分有效. Owing to the characters of small targets in infrared pictures,it is difficult for them to be distinguished by the current methods of image segmentation.The Support Vector Machine(SVM) is hardly to be extended because of its own limitde ability to the pixel operation. This article adopts the Leaste Squres Support Vector Machine(LSSVM) to classify the existing picture statistic,and then the LSSVM which has been trained can distinguish the targets. The experiments prove this method has an obvious advantage in speed and robustness than the SVM.It is very efficient to collect the small andinfrared targets in complicated background.
出处 《应用数学》 CSCD 北大核心 2007年第S1期163-167,共5页 Mathematica Applicata
关键词 最小二乘支持向量机 红外图像 膨账 归一化 Least squres support vector machine Infrared image Dilation Normalization
  • 相关文献

参考文献5

二级参考文献13

共引文献9

同被引文献23

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部