期刊文献+

一类线性多步法求解Banach空间中非线性刚性DDEs的渐近稳定性 被引量:1

Asymptotic Stability of Linear Multistep Methods for Nonlinear Stiff Delay Differential Equations in Banach Spaces
下载PDF
导出
摘要 讨论线性多步法关于Banach空间中非线性刚性延迟微分方程稳定性.对于试验问题类D(α,λ~*,β)和D(α,λ~*,δ,β),获得了一类线性多步法的渐近稳定性结果. This paper is concerned with the asymptotic stability of linear multistep methods for nonlinear stiff delay differential equations in Banach spaces.For the test problem classes D(α,λ~*,β) and D(α,λ~*,δ,β),a series of new asymptotic stability results of the linear multistep methods are obtained.
作者 时秀娟
出处 《应用数学》 CSCD 北大核心 2007年第S1期168-173,共6页 Mathematica Applicata
基金 新世纪优秀人才支持计划(NCET-05-0638) 教育部留学回国人员科研启动基金资助项目
关键词 BANACH空间 延迟微分方程 渐近稳定性 线性多步法 Banach space Delay differential equations Asymptotic stability Linear multistep methods
  • 相关文献

参考文献3

二级参考文献14

  • 1C. T. H. Baker. Retarded differential equations [J]. J. Comput. Appl. Math., 2000,125: 309-335.
  • 2A. Bellen, M. Zennaro. Numerical Methods for Delay Differential Equations [M]. Oxford University Press, Oxford, 2003.
  • 3匡跤勋.泛函微分方程的数值处理[M].北京:科学出版社,1999..
  • 4M.Z.Liu, M.N.Spijker. The stability of the methods in the numerical solution of delay differential equations [J]. IMA J.Numer.Anal., 1990, 10: 31-48.
  • 5C.M.Huang, H.Y.Hu, S.F.Li, G.N.Chen. Stability and analysis of one-lag methods for nonlinear delay differential equations [J]. Comput.Appl.Math, 1999,103: 263-279.
  • 6C.Zhang, S.zhou. Nonlinear stability and D-convergence of Runge- Kutta methods for DDEs [J]. J.Comput.Appl.Math, 1997, 85: 225-237.
  • 7李寿佛.一类多步方法的非线性稳定性.高等学校计算数学学报,1987,2:110-118.
  • 8Shoufu Li. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach [J]. spaces (to appear Science In China).
  • 9匡蛟勋 鲁连华 等.非线性滞后微分方程数值方法的稳定性[J].上海师范大学学报,1993,3:1-8.
  • 10M. Zennaro.Asymptotic stability analysis of Runge-Kutta methods for nonlinear systems of delay differential equations[J].Numerische Mathematik.1997(4)

共引文献40

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部