摘要
The kinetics of a thermal dechlorination and oxidation of NdOCl and GdOCl were investigated by using a non-isothermal thermogravimetric analysis under various oxygen partial pressures. The conversions of NdOCl and GdOCl into each of their stable oxides (Nd2O3 and Gd2O3) appeared to be an oxygen-dependent endothermic and one-step reaction. The observed activation energy for the conversions of NdOCl and GdOCl were determined as 228.3±6.1 kJ·mole-1 and 137.7±4.1 kJ·mole-1, respectively. The conversions of NdOCl and GdOCl into each of their stable oxides (Nd2O3 and Gd2O3) could be described by a power law (g(α)=α3/2) and a linear-contracting boundary reaction (g(α)=α), respectively.
The kinetics of a thermal dechlorination and oxidation of NdOCl and GdOCl were investigated by using a non-isothermal thermogravimetric analysis under various oxygen partial pressures. The conversions of NdOCl and GdOCl into each of their stable oxides (Nd2O3 and Gd2O3) appeared to be an oxygen-dependent endothermic and one-step reaction. The observed activation energy for the conversions of NdOCl and GdOCl were determined as 228.3±6.1 kJ·mole-1 and 137.7±4.1 kJ·mole-1, respectively. The conversions of NdOCl and GdOCl into each of their stable oxides (Nd2O3 and Gd2O3) could be described by a power law (g(α)=α3/2) and a linear-contracting boundary reaction (g(α)=α), respectively.