摘要
Rare earth doped orthovanadate crystal LuVO4∶Yb3+ shows high power laser applications because of the low quantum defect and the high thermal conductivity. Since electronic paramagnetic resonance (EPR) is a powerful tool to analyze the electronic properties and the local structures of paramagnetic impurity centers in crystals, the EPR spectra of the Yb3+ centers in LuVO4 crystal were measured recently. However, the above experimental results have not been theoretically interpreted. In this work, The EPR g factors and the hyperfine structure constants of 171Yb3+ and 173Yb3+ isotopes in LuVO4 crystal were theoretically studied from the perturbation formulae of the spin Hamiltonian parameters for 4f13 ion in tetragonal symmetry. The needed crystal parameters were obtained from the superposition model and the local structure of the studied system. The calculated results were in reasonable agreement with the observed values.
Rare earth doped orthovanadate crystal LuVO4∶Yb3+ shows high power laser applications because of the low quantum defect and the high thermal conductivity. Since electronic paramagnetic resonance (EPR) is a powerful tool to analyze the electronic properties and the local structures of paramagnetic impurity centers in crystals, the EPR spectra of the Yb3+ centers in LuVO4 crystal were measured recently. However, the above experimental results have not been theoretically interpreted. In this work, The EPR g factors and the hyperfine structure constants of 171Yb3+ and 173Yb3+ isotopes in LuVO4 crystal were theoretically studied from the perturbation formulae of the spin Hamiltonian parameters for 4f13 ion in tetragonal symmetry. The needed crystal parameters were obtained from the superposition model and the local structure of the studied system. The calculated results were in reasonable agreement with the observed values.
基金
the Science Foundations of CSTC (2007BB4385 , 2007BB4391)
Education Committee of Chongqing (KJ060515 , KJ050502)