摘要
Samarium-doped yttrium aluminum garnet (YAG∶Sm3+) phosphors were synthesized by nitrate-citrate sol-gel combustion method. Phase evolution, morphology and absorbency of the obtained materials were characterized by XRD, FESEM, reflection spectrum, respectively. The experimental results showed that single-phase cubic YAG∶Sm3+ crystalline was directly obtained at 800 ℃ from amorphous precursor, and mostly developed at 900 ℃. The prepared powders were relatively agglomerated with an average particle size of 300 nm. The reflection spectrum showed that there were several apparent characteristic absorption peaks due to the 4f→4f inner shell electron transitions from the 6H5/2 ground state to 6FJ (J=9/2, 7/2 and 5/2) excited state of Sm3+. Moreover, the intensity of the characteristic peaks was enhanced with the increasing concentration of Sm3+ ions.
Samarium-doped yttrium aluminum garnet (YAG∶Sm3+) phosphors were synthesized by nitrate-citrate sol-gel combustion method. Phase evolution, morphology and absorbency of the obtained materials were characterized by XRD, FESEM, reflection spectrum, respectively. The experimental results showed that single-phase cubic YAG∶Sm3+ crystalline was directly obtained at 800 ℃ from amorphous precursor, and mostly developed at 900 ℃. The prepared powders were relatively agglomerated with an average particle size of 300 nm. The reflection spectrum showed that there were several apparent characteristic absorption peaks due to the 4f→4f inner shell electron transitions from the 6H5/2 ground state to 6FJ (J=9/2, 7/2 and 5/2) excited state of Sm3+. Moreover, the intensity of the characteristic peaks was enhanced with the increasing concentration of Sm3+ ions.
基金
Project supported by 973 Research Project of China and Jiangsu Provincal Natural Sciences Fund (BK2007724)