期刊文献+

园林池塘水缓慢流动的数值模拟研究

Application of fluent in water flowing circulation in anomaly garden water
下载PDF
导出
摘要 Fluent软件是一种流体力学中通用性较强的商业软件,应用范围十分广泛。介绍了CFD技术及Fluent软件的主要特点。以世界文化遗产——苏州拙政园为例,介绍了Fluent软件在园林不规则水面人工水力循环中的应用。计算结果为不同条件下工况条件的改变提供依据。 Fluent,a commercial CFD software,is applied generally and widely.This paper in- troduced the technology of CFD and the character of Fltent software.The software was applied to simulate the water flowing driven by a hydraulic flowing circulation system in erose garden water in the humble administrator's garden,the world heritage.The results show that under different con- ditions the calculated findings in water flowing may have a practical significance to guide practice.
出处 《给水排水》 CSCD 北大核心 2007年第S1期311-313,共3页 Water & Wastewater Engineering
基金 国家"十五"重大科技专项(863)项目(2003AA601070) 江苏省"十五"社会发展重点项目(B52004048)
关键词 CFD技术 Fluent软件 水力循环 苏州拙政园 CFD technique Fluent software Water flowing circulation The Humble Administrator's Garden of Suzhou
  • 相关文献

参考文献2

二级参考文献40

  • 1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
  • 8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
  • 9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.
  • 10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989.

共引文献221

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部