期刊文献+

结构化EM算法在小样本贝叶斯网络学习中的应用

Application of structural EM algorithm to learning Bayesian networks for small sample
原文传递
导出
摘要 在贝叶斯网络学习中,合理数据集的存在可以大大降低贝叶斯网络学习对知识工程的过多依赖.但当数据集中样本数量不够大时,可能没有足够多的样本甚至不存在样本来代表变量间的某些条件独立关系,从而无法学习贝叶斯网络.将数据集修正与结构化-期望最大化算法相结合,得到一种有效的小样本上贝叶斯网络学习的方法,实验结果表明,该方法能够有效地进行小样本上贝叶斯网络学习. Existing data sets of cases can significantly reduce the knowledge engineering effort required to learning Bayesian networks.When a data set is small,many conditioning cases are represented by too few or no data records and they do not offer sufficient basis for learning Bayesian networks.It is proposed a method that combines data revising and the Bayesian Structural EM algorithm.Experimental results show that this method is effective in learning Bayesian networks from small data set.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第S1期55-58,63,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 教育部春晖计划资助项目(Z2005-2-65003) 云南省自然科学基金资助项目(2005F0009Q)
关键词 EM算法 贝叶斯网 小数据集 EM algorithm Bayesian networks small data
  • 相关文献

参考文献10

  • 1Gregory F. Cooper,Edward Herskovits.A Bayesian Method for the Induction of Probabilistic Networks from Data[J]. Machine Learning . 1992 (4)
  • 2LAM W,BACCHUS F.Learning Bayesian belief networks:an approach based on the MDL principle. Computational In-telligence . 1994
  • 3FRIEDMAN N,GOLDSZMIDT M,WYNER A.On the application of the bootstrap for computing confidence measures onfeatures of induced Bayesian networks. Artificial Intelligence and Statistics:Proceeding of Uncertainty 99 . 1999
  • 4FRIEDMAN N,GOLDSZMIDT M,WYNER A.Data analysis with Bayesian networks:a bootstrap approach. Pro-ceedings of the 15th Conference on Uncertaintyin Artificial Intelligence(UAI-99) . 1999
  • 5Agnieszka Onisko,MAREKJ Druzdzel,and Hanna Wasyluk.Learning Bayesian Network Parameters fromSmall Data Sets:Application of Noisy-OR Gates. Working Notes of the Workshop on’Bayesian and Causal Networks:FromInferenceto Data Mining,12th European Conference on Artificial Intelligence(ECAI-2000) . 2000
  • 6DEMPSTER A P,LAIRD N M,RUBI N D B.Maxi mumlikelihood fromincomplete data via EMalgorithm(with discus-sion). Journal of the Royal Statistical Society . 1977
  • 7NIBLETT.Constructing decision trees in noisy domains. Proceeding of the Second European Working Session on Learn-ing . 1987
  • 8Cooper G,Herskovits E.A bayesian method for the induction of probabilistic networks from data. Machine Learning . 1992
  • 9S. L. Lauritzen.The EM algorithm for graphical association models with missing data. Computational Statistics . 1995
  • 10Friedman N.Learning belief networks in the presence of missing values and hidden variables. In: Proceedings of the 14th International Conference on Machine Learning, San Francisco . 1997

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部