期刊文献+

多值逻辑中的命题相关性与逻辑运算研究 被引量:5

Proposition relativity and logic calculation in many-valued logic
下载PDF
导出
摘要 命题的属性包括结构属性和值属性.命题的结构决定了命题之间的关系,决定了命题之间的逻辑运算.命题的真值只是一个由命题的结构决定的值属性,并不能代表整个命题.逻辑运算是命题的运算,不是真值的运算.多值逻辑中,命题逻辑运算结果由命题的关系决定,真值相同的不同命题,逻辑运算结果的真值不一定相同,逻辑运算不是处处同态于某一个或某一簇真值函数(算子),有时复合命题的真值不能被它的成分命题的真值完全确定,所以多值逻辑的联结词并不总能定义成真值函数(算子)的形式.多值逻辑的命题公式不能再看作真值函数,命题公式是关于命题的函数. Attribute of a proposition includes structure attribute and value attribute.The structure of a proposition determines the truth value of the proposition,the relationship between the propositions,and the logic calculation result.The truth value of the proposition is only a value attribute determined by the structure of a proposition,it cannot stand for the whole proposition.And logic calculation is the calculation between the propositions,not the calculation between the truth values.In the many-valued logic,proposition logic calculation result is decided by the relationship of propositions.The different propositions with the same truth value would not always have the same logic calculation result.Logic calculation is not always homomorphic with a certain operator or a group of operators(the functions of truth value).Sometimes,the truth value of composite proposition cannot be fully determined by the truth values of the member propositions.Therefore,the conjunction of the many-valued logic cannot always be defined by the form of the functions of truth value(operators).The proposition formula in many-valued logic cannot be considered as the function of the truth value.The proposition formula is the function of proposition.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2007年第S2期172-177,共6页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(60573014) 国家高技术研究发展计划(863计划)资助项目(2006AA01z140)
关键词 多值逻辑 逻辑运算 命题公式 真值函数 many-valued logic logic calculation proposition formula truth value function
  • 相关文献

参考文献2

二级参考文献12

  • 1王万森,何华灿.基于泛逻辑学的柔性命题逻辑研究[J].小型微型计算机系统,2004,25(12):2116-2119. 被引量:6
  • 2王保保,吕建平,赵树芗.模糊集合的测度运算[J].西安电子科技大学学报,1996,23(2):235-240. 被引量:3
  • 3何华灿.论第二次逻辑学革命[A]..中国人工智能进展(2003)[C].北京:北京邮电大学出版社,2003.32-41.
  • 4Roeper P, Leblanc H. Probability Theory and Probability Logic. Toronto: University of Toronto Press, 1999.
  • 5Nilsson NJ. Probalistic logic. Artificial Intelligence, 1986,28:71-81.
  • 6Lewis D. Probabilities of conditionals and conditional probabilities. Philosophy Review, 1976,85(3):297-315.
  • 7Goodman IR, Ncuyen HT, Walker EA. Conditional Inference and Logic for Intelligent Systems: A Theory of Measure_Free Conditioning. Amsterdam North_Holland, 1991.
  • 8Goodman IR, Gupta NM, Ncuyen HT, Rogers GS. Conditional Logic in Expert Systems. Amsterdam North_Holland, 1991.
  • 9B R Gaines. Fuzzy and probability uncertainty logics[J]. Information and Control. 1978,38:154-169.
  • 10P Carabrase. An algebraic synthesis of the foundation If logic and probability[J]. Information Science. 1987,42:187-237.

共引文献14

同被引文献49

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部