期刊文献+

块三对角矩阵的逆 被引量:1

Inverses of Block Tridiagonal Matrices
下载PDF
导出
摘要 讨论了非对称块三对角矩阵的求逆.首先由块三对角矩阵的块LU和UL分解给出了两个绞形块分解,基于这些块分解及块三对角矩阵逆矩阵的特殊结构,建立了一个块三对角矩阵求逆的算法.该算法比已有的块三对角矩阵求逆算法的计算复杂度低. The inverse of a nonsymmetrical block tridiagonal matrix is investigated.Two twisted decompositions of a block tridiaognal matrix are firstly given according to LU and UL decompositions.Based on these block decompositions and the special structure of the inverse matrix,an algorithm for inverting a block tridiaognal matrix is established.The computing complexity of this algorithm is lower than that of some existed algorithm.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第S1期340-342,共3页 Journal of University of Electronic Science and Technology of China
关键词 算法 块三对角矩阵 逆矩阵 绞形块分解 algorithm block tridiaognal matrices the inverse matrices twisted decompositions of a block
  • 相关文献

同被引文献17

  • 1宋以胜,张传定,张书华.三对角、五对角对称Toeplitz矩阵的解析逆阵[J].测绘学院学报,2004,21(2):82-84. 被引量:1
  • 2Ahmed Driss Aiat Hadj, Mohamed Elouafi. A fast numeri- cal algorithm for the inverse of a tridiagonal and pentadi- agonal matrix[J]. Applied Mathematics and Computation, 2008,202 : 441-445.
  • 3M. E. Kanal, N. A. Baykara, M. Demiralp. Theory and al- gorithm of the inversion method for pentadiagonal matri- ces[J]. J Math Chem,2012,20:289 299.
  • 4Emrah Kihc. Explicit formula for the inverse of a tridiago nal matrix by backward continued fractions[J]. Applied Mathematics and Computation, 2008,197 : 345 357.
  • 5Moawwad El Mikkawy,E1 Desouky Rahmo. A new recur- sive algorithm for inverting general periodic pentadiagonal and anti pentadiagonal matrices[J]. Applied Mathematics and Computation, 2009,207 : 164-170.
  • 6A. A. Karawia. A computational algorithm for solving pe riodic penta-diagonal linear systems[J]. Applied Mathe matics and Computation,2006,174:613 618.
  • 7Moawwad EI Mikkawy, EI Desouky Rahmo. Symbolic al- gorithm for inverting cyclic pentadiagonal matrices recur- sively-derivation and implementation [J].Computer and Mathematics with Applications, 2010,59 .- 1 386-1 396.
  • 8Lin Xiao-lin, Huo Pei pei,Jia Ji teng. A new recursive aL gorithm for inverting general periodic sevendiagonal and anti sevendiagonal matrices[J]. Far East Journal of Ap- plied Mat hematics, 2014,86 ( 1 ) : 41- 55.
  • 9A. A. Karawia. Inversion of general cyclic heptadiagonal matrices[J]. Mathematics Problems in Engineering, 2013 (2013) :1-9.
  • 10Diele F,Lopez L. The use of the factorization of five di agonal matrices by tridiagonal Toeplitz matrices[J]. Ap pl. Math. Lett. , 1998,11 : 61-69.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部