期刊文献+

飞行时间质谱技术在乳腺癌诊断中的应用 被引量:1

Clinical application of time-of-flight mass spectrometry for diagnosis in breast cancer
全文增补中
导出
摘要 目的采用表面增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)技术检测乳腺癌患者血清蛋白质指纹图谱,分析健康人与乳腺癌患者以及乳腺癌患者手术前后特异性标志蛋白变化,探讨血清蛋白质指纹图谱在乳腺癌疗效评价及复发监测中的临床意义。方法用SELDI-TOF-MS技术检测30例乳腺癌患者(术前和术后第7天)及20名健康人的血清蛋白质指纹图谱,筛选乳腺癌特异性蛋白标志物,结合支持向量机软件建立诊断模型。比较乳腺癌手术前后特异性蛋白的变化。结果与健康人血清蛋白质谱相比,术前乳腺癌血清中有3个差异蛋白,质荷比为2043、3938的标志分子低表达,质荷比为5639的标志分子高表达。术后质荷比为2043、3938的标志分子稳定上调,质荷比为5639的标志分子稳定下调,差异具有统计学意义。以筛选3个特异性蛋白质峰的数据构建的诊断模型经交叉验证,灵敏性和特异性均为100%。结论SELDI-TOF-MS检测血清蛋白质组学图谱在乳腺癌的早期诊断、术后病情转归及监测复发等方面具有一定的临床指导意义。 Objective To detect the serum proteomic patterns and screen for potential tumor hiomarkers in breast cancer patients by using SELDI-TOF-MS technology;To explore the clinical value of serum proteomic patterns in evaluating therapy and monitoring recurrence by analyzing the change of potential tumor biomarkers of pre and post-operation in breast cancer patients.Methods The serum proteomic pat- terns in 30 cases of breast cancer patient(pre and post-operation)and 20 cases of health volunteer were de- tected by SELDI-TOF-MS.Diagnostic model was developed using support vetor machines software.Results A panel of three biomarkers was selected.The biomarker protein at the M/Z values 2043,3938 lowly ex- pressed but highly expressed at 5639 in breast cancer;the biomarker protein peaks at the M/Z values 2043, 3938 up-regulated but down-regulated at 5639 after operation.The model composed by 3 difference biomarkers was cross-validated,its sensitivity and specificity were 100%.Conclusion The proteomic ap- proaches such as SELDI-TOF-MS show great clinical value for early diagnosis,evaluating therapy and moni- toring recurrence for breast cancer.
出处 《肿瘤研究与临床》 CAS 2007年第5期305-307,共3页 Cancer Research and Clinic
基金 宁波市"十五"重点攻关资助项目(20-002602)
关键词 乳腺肿瘤 SELDI-TOF-MS Breast neoplasms SELDI-TOF-MS
  • 相关文献

参考文献1

二级参考文献4

共引文献41

同被引文献21

  • 1荆涛,荆友科,董胜国.蛋白质组学研究进展及在泌尿系肿瘤研究中的应用[J].肿瘤研究与临床,2006,18(5):348-351. 被引量:4
  • 2Kocevar N,Hudler P, Komel R. The progress of proteomic approachesin searching for cancer biomarkers. N Biotechnol, 2013, 30: 319-326.
  • 3Deutsch EW, Lam H, Aebersold R. Data analysis and bioinformaticstools for tandem mass spectrometry in proteomics. Physiol Genomics,2008,33: 18-25.
  • 4Mohamedali A, Guinn BA, Sahu S, et al. Serum profiling revealsdistinctive proteomic markers in chronic myeloid leukaemia patients.Br J Haematol, 2009, 144: 263-265.
  • 5Ge F,Bi LJ, Tao SC, et al. Proteomic analysis of multiple myeloma:current status and future perspectives. Proteomics Clin Appl, 2011,5:30-37.
  • 6Xiong Q, Zhong Q, Zhang J, et al. Identification of novel miR-21 targetproteins in multiple myeloma cells hy quantitative proteomics. JProteome Res, 2012, 11: 2078-2090.
  • 7Ge F, Zhang L, Tao SC, et al. Quantitative proteomic analysis of tumorreversion in multiple myeloma cells. J Proteome Res, 2011, 10: 845-855.
  • 8Russo D, Bisca A, Celano M, et al. Proteomic analysis of humanthyroid cell lines reveals reduced nuclear localization of Mn-SOD inpoorly differentiated thyroid cancer cells. J Endocrinol Invest, 2005,28: 137-144.
  • 9Ban Y, Yamamoto G, Takada M, et al. Proteomic profiling of thyroidpapillary carcinoma. J Thyroid Res, 2012, 2012: 815079.
  • 10Tan F, Jiang Y, Sun N, et al. Identification of isocitrate dehydrogenase1 as a potential diagnostic and prognostic biomarker for non-small celllung cancer by proteomic analysis. Mol Cell Proteomics, 2012,11:Mill 008821.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部