摘要
The planar flexible manipulator undergoing large deformation is investigated by using finite element method (FEM). Three kinds of reference frames are employed to describe the deformation of arbitrary point in the flexible manipulator, which are global frame, body-fixed frame and co-rotational frame. The rigid-flexible coupling dynamic equation of the planar flexible manipulator is derived using the Hamilton’s principle. Numerical simulations are carried out in the end of this paper to demonstrate the effectiveness of the proposed model. The simulation results indicate that the proposed model is efficient not only for small deformation but also for large deformation.
The planar flexible manipulator undergoing large deformation is investigated by using finite element method (FEM). Three kinds of reference frames are employed to describe the deformation of arbitrary point in the flexible manipulator, which are global frame, body-fixed frame and co-rotational frame. The rigid-flexible coupling dynamic equation of the planar flexible manipulator is derived using the Hamilton’s principle. Numerical simulations are carried out in the end of this paper to demonstrate the effectiveness of the proposed model. The simulation results indicate that the proposed model is efficient not only for small deformation but also for large deformation.
基金
The National Natural Science Foundation of China(No10372057
No10472065)