期刊文献+

基于模糊最小二乘支持向量机的系统边际电价预测方法 被引量:1

System Marginal Price Forecasting Using Fuzzy Least Square Support Vector Machine
下载PDF
导出
摘要 提出了基于模糊最小二乘支持向量机的系统边际电价(system marginal price,SMP)预测方法。为了减少样本数据中孤立点对回归性能的影响,将模糊隶属度的概念引入到最小二乘支持向量机中的同时,采用网格搜索和交叉验证的方法寻找最佳参数组合,使系统边际电价算法性能达到最佳。以美国加州电力市场的实际数据作计算实例,分别采用标准三层BP神经网络和模糊最小二乘支持向量机进行系统边际电价预测,结果表明基于模糊最小二乘支持向量机的系统边际电价预测的方法有效提高了预测精度。 A method based on fuzzy least square support vector machine (FLS-SVM) is proposed for system marginal price (SMP) forecast. The concept of fuzzy membership is introduced into FLS-SVM to reduce the effects of sample data outliers on regression performance. Meanwhile, grid search and cross validation are adopted to search the best parameters and enable optimal performance of SMP algorithm. Then taking the data of California electricity market for calculation example, the SMP forecasting is performed by FLS-SVM and the standard 3-layer BP neural network. The results show that the proposed method effectively increases the forecasting precision.
作者 蔡振华
机构地区 湛江供电局
出处 《广东电力》 2009年第3期23-27,共5页 Guangdong Electric Power
关键词 模糊最小二乘支持向量机 系统边际电价 网格搜索 交叉验证 fuzzy least square support vector machine (FLS-SVM) system marginal price (SMP) grid search cross validation
  • 相关文献

参考文献15

二级参考文献48

  • 1张步涵,刘小华,万建平,刘沛,程时杰.基于混沌时间序列的负荷预测及其关键问题分析[J].电网技术,2004,28(13):32-35. 被引量:46
  • 2焦李成.神经网络应用与实现[M].西安:西安电子科技大学出版社,1995..
  • 3焦李成.神经网络应用与实现[M].西安:西安电子科技大学出版社,1995..
  • 4[8]Gao Feng, Guan Xiaohong, Gao Xiren. Forecast Power Market Clearing Price Using Neural Network. In: Proceedings of 3rd World Congress on Intelligent Control and Automation. Hefei: 2000
  • 5[10]Fahlman S E, Lebiere Christian. The Cascade-correlation Learning Architecture. In: Advances in Neural Information Processing Systems (NIPS89) Morgan-Kaufmann, San Mateo CA: 1990. 524~532
  • 6[11]Fahlman S E. Faster-learning Variations on Back-propagation: An Empirical Study. In: Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann: 1988
  • 7[1]Ni Erna, Luh P B. Forecasting Power Market Clearing Price and Its Discrete PDF Using a Bayesian-based Classification Method.In: Power Engineering Society Winter Meeting. Columbus (USA): 2001.1518~1523
  • 8[2]Guan X H, Lun P B. Integrated Resource Scheduling and Bidding in the Deregulated Electric Power Market: New Challenges. Discrete Event Dynamic Systems: Theory and Applications, 1999,9(4)
  • 9[3]Skantze Petter,Ilic Marija. Stochastic Modeling of Electric Power Prices in a Multi-market Environment. In:Power Engineering Society Winter Meeting. Singapore: 2000. 1109~1114
  • 10[4]Weber J D, Overbye T J. A Two-lever Optimization Problem for Analysis of Market Bidding Strategies. In: Power Engineering Society Summer Meeting. Edmonton: 1999. 682~687

共引文献2445

同被引文献8

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部