期刊文献+

探测交通时间序列长相关性的多重分形消除趋势波动分析方法 被引量:1

Detecting Long-range Correlations of Traffic Time Series with Multifractal Detrended Fluctuation Analysis
下载PDF
导出
摘要 交通时间序列的多重分形性通常与交通流时间序列的长相关性或概率密度函数有关。本文应用多重分形消除趋势波动分析(MF-DFA)方法来研究交通流时间序列。通过分析北京玉泉营快速路的速度时间序列,我们发现速度时间序列存在一个时间标度值,其前后的信号分别具有不同的相关指数。最后,我们用MF-DFA方法对原始序列和扰动序列进行分析比较,发现交通时间序列的多重分形性主要是由交通流的相关性决定的。 Multifractal behavior in traffic time series usually connected with different long-range (time-) correlations of the small and large fluctuations or (and) a broad probability density function for the values of the time series. Multifractal detrended fluctuation analysis (MF-DFA) is used to study the traffic speed fluctuations. It is demonstrated that the speed time series, observed on the Beijing Yuquanying highway over a period of about 40 months, has a crossover time scale sx , where the signal has different correlation exponents in time scales s >sx and s<sx. Finally, the long-range correlation was validated to be dominant by the method of comparing the MFDFA results for original series to those obtained via the MFDFA for shuffled series.
出处 《中国科技论文》 CAS 2006年第2期123-128,共6页 China Sciencepaper
基金 科技部973基金项目(2004CB318005)资助
关键词 长相关性 交叉点 多重分形消除趋势波动分析(MF-DFA) 交通流时间序列 概率密度函数 long-range correlation crossover multifractal detrended fluctuation analysis (MFDFA) traffic time series probability density function.
  • 相关文献

参考文献21

  • 1Kantz H,,Schreiber T.Nonlinear Time Series Analysis. . 1996
  • 2Chowdhury D,Santen L,Schadschneider A.Statistical physics of vehicular traffic and some related systems. Physics Reports . 2000
  • 3Helbing D.Traffic and related self-driven many-particle systems. Reviews of Modern Physics . 2001
  • 4B S Kerner.The Physics of Traffic. . 2004
  • 5van Zuylen,Henk J,Marina S,Geenhuizen V,Peter N.(Un)predictability in Traffic andTransport Decision Making. Transportation Research . 1999
  • 6Paczuski M,Nagel K.Self-Organized Criticality and 1/fNoise in Traffic. Cond-Mat/960201 .
  • 7Mahnke R.Stochastic Theory of Freeway Traffic. Phys,Rev.E . 1999
  • 8Choi M Y,Lee H Y.Traffic Flow and 1/f fluctuation. Physical Review E Statistical Nonlinear and Soft Matter Physics . 1995
  • 9Nagel K,Rasmussen S.Traffic at the Edge of Chaos. Ar-tificial LifeⅣ:Proceeding . 1994
  • 10Kantelhardt,J.W.,Zschiegner,S.A.,Koscielny-Bunde,E.,Bunde,A.,Havlin,S.,Stanley,H.E.Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series. Physica A Statistical Mechanics and its Applications . 2002

同被引文献6

  • 1Zhao X J, Shang P J, Jin Q. Multifractal detrended cross-correlation analysis of Chinese stockmarkets based on time delay[J], Fractals, 2011, 19:1-10.
  • 2Kantelhardt J W, Zschiegner S A, K-Bunde E, Havlin S, bunde A, Stanley H E. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316: 87-114.
  • 3Huang J J, Shang P J, Zhao X J. Multiscale diffusion entropy analysis on volatility in financial markets[J]. Physica A, 2012, 391: 5739-5745.
  • 4Zhao X J, Shang P J, Zhao C, Wang J, Tao R. Minimizing the trend effect on detrended cross- correlation analysis with empirical mode decomposition[J]. Chaos, Solitons & Fractals, 2012, 45: 166-173.
  • 5Scafetta N,Grigolini P. Scaling detection in time series: Diffusion entropy analysis[J]. Phys Rev E, 2002, 66.
  • 6Jizba P, Arimitsu T. The world according to R~nyi: thermodynamics of multifractal systems[J]. Annals of Physics, 2004 312, 17.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部