期刊文献+

非均质中厚板静力弯曲问题的无网格LRPIM分析

Static Bending Analysis for Nonhomogeneous Moderately Thick Plates by Meshless LRPIM
下载PDF
导出
摘要 采用无网格局部径向点插值法来分析非均质中厚板的弯曲问题.这种无网格方法采用径向基函数耦合多项式基函数来近似试函数,采用四次样条函数作为加权残值法中的权函数.所构造成的形函数具有Kronecker Delta性质,可以很方便地施加本质边界条件.在计算过程中,取积分中的高斯点的材料参数来模拟问题域材料特性的变化.算例表明这是一种真正的无网格方法,具有效率高、精度高和易于实现等优点. A meshless local radial point interpolation method for the analysis of nonhomogeneous moderately thick plate is presented in this paper. It uses a radial basis function (RBF) coupled with a polynomial basis function as a trail function, and uses the quartic spline function as a test function of the weighted residual method. The shape function obtained in trail function has the Kronecker Delta property, and the essential boundary conditions can be easily imposed. In computational procedures, variations of material properties in the considered domain are simulated by adopting proper material parameters at Gauss points in integrations. The results show that the presented method is a truly meshless method and has a number o{ advantages, such as the high efficiency,the quite good accuracy and easy implement.
出处 《湖南工程学院学报(自然科学版)》 2009年第1期33-36,共4页 Journal of Hunan Institute of Engineering(Natural Science Edition)
基金 湖南省教育厅科研资助项目(08C230)
关键词 无网格法 非均质中厚板 局部径向点插值法 弯曲问题 meshless method nonhomogeneous moderately thick plate local radial point interpolation method bending problem
  • 相关文献

参考文献7

  • 1Lu Y Y. , Belytschko T, Gu L. A new Implementation of the Element-free Galerkin Method[J]. Comput. Methods in Appl. Mech. and Engrg., 1994,113:397-414.
  • 2S.N. Atluri, T. Zhu. A new Meshless Local Petrov -Galerkin (MLPG) Approach in Computational Mechanics[J]. Comput. Mech., 1998, 22:117-127.
  • 3龙述尧.弹性力学问题的局部Petrov-Galerkin方法[J].力学学报,2001,33(4):508-518. 被引量:72
  • 4Liu G. R. ,Yan L, Wang J. G. , etc. Point Interpolation Method Based On Local Residual Formulation Using Radial Basis Functions [J]. Struet. Engrg. Mech. , 2002, 14 (6):713-732.
  • 5孙建东,张伟星,童乐为.无单元法求解任意边界条件下的中厚板弯曲问题[J].力学季刊,2006,27(2):348-353. 被引量:8
  • 6何沛祥,李子然,冯淼林,吴长春.非均质材料无网格Galerkin法[J].机械强度,2002,24(1):70-72. 被引量:9
  • 7Wang J. G. , Liu G.R. On the optimal shape parameters of radial basis functions used for 2- D meshless methods[J]. Comput. Methods Appl. Mech. Engrg. , 2002, 191:2611-2630.

二级参考文献16

  • 1王龙甫.弹性理论[M].科学出版社,1979..
  • 2Atluri S N,Comput Mech,1998年,22卷,2期,117页
  • 3Belytschko T,Int J Num Meth Eng,1994年,37卷,229页
  • 4王龙甫,弹性理论,1979年
  • 5Belytschko T, Lu Y Y, Gu L. Element-free Galerkin Methods[J]. International Journal for Numerical Methods in Engineering, 1994,37(2) :229-256.
  • 6Lu Y Y, Belytschko T, Gu L. A new implementation of the element-free Galerkin method[J]. Comput Methods Appl Mech Engrg, 1994,113:397 - 414.
  • 7Belytschko T,Lu Y Y,Gu L.Element free Galerkin methods[].International Journal for Numerical Methods in Engineering.1994
  • 8Erdogan F,Wu B H.The surface crack problem for a plate with functionally graded properties[].Journal of Applied Mechanics.1997
  • 9Belytschko T,Krongauz Y,Organ D,et al.Meshless method: an overview and recent developments[].Computer Methods.1996
  • 10BelytschkoT,LuYY,GuL.FractureandcrackgrowthbyElement freeGalerkinmethods[].ModelingSimulMaterSciEngrg.1994

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部