期刊文献+

Influence of Nanocrystallization on Magnetic Properties of the Co-Based Alloys Thin Films

Influence of Nanocrystallization on Magnetic Properties of the Co-Based Alloys Thin Films
下载PDF
导出
摘要 The rapid recurrent thermal annealing (RRTA) method has been used to amorphous Co-Nb-Zr soft magnetic thin films fabricated by DC sputtering. By using this method, in this paper, the crystalline grains with diameter of about 30~90 nm are formed and the partial nanocrystallization of the films is realized. As a result, the soft magnetic properties of the Co-based nanocrystalline thin films are improved greatly after RRTA: their resistivity is a quarter decreased; the average initial permeability is enhanced from 3 500 to over 5 000; the impedance is increased form 20 ~100 ?(at 1.4 GHz); the resonance peak is moved about 200 MHz down to low frequency. The evident improvement enables the Co-based nanocrystalline thin films to be used over a much wide frequency range of 1 KHz ~1.5 GHz. The rapid recurrent thermal annealing (RRTA) method has been used to amorphous Co-Nb-Zr soft magnetic thin films fabricated by DC sputtering. By using this method, in this paper, the crystalline grains with diameter of about 30~90 nm are formed and the partial nanocrystallization of the films is realized. As a result, the soft magnetic properties of the Co-based nanocrystalline thin films are improved greatly after RRTA: their resistivity is a quarter decreased; the average initial permeability is enhanced from 3 500 to over 5 000; the impedance is increased form 20 ~100 ?(at 1.4 GHz); the resonance peak is moved about 200 MHz down to low frequency. The evident improvement enables the Co-based nanocrystalline thin films to be used over a much wide frequency range of 1 KHz ~1.5 GHz.
出处 《Journal of Electronic Science and Technology of China》 2004年第2期60-64,共5页 中国电子科技(英文版)
关键词 soft magnetic thin film Co base rapid recurrent thermal annealing NANOCRYSTALLINE soft magnetic thin film Co base rapid recurrent thermal annealing nanocrystalline
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部