期刊文献+

关于变分不等式的例外簇

On Exceptional Family of Variational Inequality
下载PDF
导出
摘要 给出了变分不等式的例外簇的一个新定义 ,十分简洁地证明它是Zhao ,Han和Qi( 1 999)所定义的例外簇的推广 ,并以此为基础 ,对张、韩和徐 ( 2 0 0 0 )的一般存在性定理给出一个新的证明 . A new definition of exceptional family of variational inequality is proposed.It is proved simply that the definition is a generalization of a definition of Zhao,Han and Qi (1999).Based on it,a new proof of a basic existence theorem of Zhang,Han and Xu (2000) is given.
出处 《应用数学》 CSCD 北大核心 2004年第S1期14-16,共3页 Mathematica Applicata
基金 国家自然科学基金资助项目 (70 2 710 19)
关键词 变分不等式 例外簇 解的存在性 拓扑度 Variational inequality Exceptional family Existence of solution Topology degree
  • 相关文献

参考文献3

  • 1张立平,韩继业,徐大川.变分不等式问题的解的存在性[J].中国科学(A辑),2000,30(10):893-899. 被引量:9
  • 2Y. B. Zhao,J. Y. Han,H. D. Qi. Exceptional Families and Existence Theorems for Variational Inequality Problems[J] 1999,Journal of Optimization Theory and Applications(2):475~495
  • 3G. Isac,V. Bulavski,V. Kalashnikov. Exceptional Families, Topological Degree and Complementarity Problems[J] 1997,Journal of Global Optimization(2):207~225

二级参考文献10

  • 1Y. B. Zhao,J. Y. Han,H. D. Qi. Exceptional Families and Existence Theorems for Variational Inequality Problems[J] 1999,Journal of Optimization Theory and Applications(2):475~495
  • 2Y.B. Zhao,J. Han. Exceptional Family of Elements for a Variational Inequality Problem and its Applications[J] 1999,Journal of Global Optimization(3):313~330
  • 3G. Isac,W. T. Obuchowska. Functions Without Exceptional Family of Elements and Complementarity Problems[J] 1998,Journal of Optimization Theory and Applications(1):147~163
  • 4G. Isac,V. Bulavski,V. Kalashnikov. Exceptional Families, Topological Degree and Complementarity Problems[J] 1997,Journal of Global Optimization(2):207~225
  • 5Patrick T. Harker,Jong-Shi Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications[J] 1990,Mathematical Programming(1-3):161~220
  • 6Masakazu Kojima. A unification of the existence theorems of the nonlinear complementarity problem[J] 1975,Mathematical Programming(1):257~277
  • 7Jorge J. Moré. Classes of functions and feasibility conditions in nonlinear complementarity problems[J] 1974,Mathematical Programming(1):327~338
  • 8B. C. Eaves. On the basic theorem of complementarity[J] 1971,Mathematical Programming(1):68~75
  • 9S. Karamardian. Generalized complementarity problem[J] 1971,Journal of Optimization Theory and Applications(3):161~168
  • 10Philip Hartman,Guido Stampacchia. On some non-linear elliptic differential-functional equations[J] 1966,Acta Mathematica(1):271~310

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部