期刊文献+

基于遗传算法思想的模拟退火算法应用于红外图像分割 被引量:1

IR Image Segmentation Based The 'SA Under GA Ideas' Algorithms
下载PDF
导出
摘要 文中借鉴进化论的"适者生存"的思想和遗传算法中的概念,对传统的模拟退火算法进行了改进。特别是对Metropolis采样中的随机逼近,采用了仿生技术加以指导,加速随机逼近向全局最优方向进行,即文中所提出的基于遗传算法的模拟退火算法(‘SA Under GA Ideas’Algorithms)。仿真试验证明,该算法能够加速模拟退火过程,同时对噪声和孤立的小区域可以进行有效的抑制和合并。 Under the 'Survival of the fittest' ideas and Genetic Algorithms, this paper improves the Classical Simulated Annealing. Especially in the process of Metropolis Stochastic Approximation, the new algorithms called 'SA Under GA Ideas' Algorithms impulses the stochastic approximation to the optimization. The following experiments approved the advantages of the new algorithms, such as the noise immune and combination of petty independent regions.
出处 《弹箭与制导学报》 CSCD 北大核心 2004年第S7期178-181,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 马尔可夫随机场 模拟退火算法 遗传算法 markov random field simulated annealing genetic algorithms
  • 相关文献

参考文献7

二级参考文献11

  • 1[1]White R G. Change detection in SAR imagery[J]. Int. J. Remote sensing, 1991,12: 339~ 360.
  • 2[2]Cook R, Mcconnell I. Mum segmentation for SAR images[A].In:SPIE Proc. [C]. Rome, 1994,2316:92~103.
  • 3[3]Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6 (6):721~741.
  • 4[4]Gerhard Winkler. Image analysis, Random fields and Dynamuic Monte Carlo methods[D]. Berlin :Springer-Verlag, 1999.
  • 5[5]Derin H, Elliot H. Modeling and segmenttion of noisy and textured images using Gibbs rabdom field[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1987,9(1):39~55.
  • 6[6]Weisenseel Robert A, Karl W Clem MRF-based algorithm for segmentation of SAR images[A]. In:Proceeding of Int. Conf. on Image Processing [C], Chicago, 1998,3: 770~ 774.
  • 7[7]Ulaby F T, Kouyate F. Texture information in SAR images[J].IEEE Trans. on Geosc. Remote Sensing, 1986, 24(2): 235~245.
  • 8[8]Lakshmanan S, Derin H. Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing [J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989,11(8) :799~813.
  • 9[9]Besag J. On the statistical analysis of dirty pictures[J]. Journal of Royal Statistical Society. B, 1986,48:259~302.
  • 10[10]Park J, Kurz L. Image enhancement using the modified ICM method [J]. IEEE Trans. on Image Processing, 1996, 5(5):765~771.

共引文献6

同被引文献14

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部